Microindentation Techniques in Materials Science and Engineering

MICROINDENTATION TECHNIQUES IN MATERIALS SCIENCE AND ENGINEERING

A symposium sponsored by ASTM Committee E-4 on Metallography and by the International Metallographic Society Philadelphia, PA, 15–18 July 1984

ASTM SPECIAL TECHNICAL PUBLICATION 889
Peter J. Blau and Brian R. Lawn
National Bureau of Standards
editors

ASTM Publication Code Number (PCN) 04-889000-28

Library of Congress Cataloging-in-Publication Data

Microindentation techniques in materials science and engineering.

(ASTM special technical publication; 889)
"ASTM publication code number (PCN) 04-889000-28."
Includes bibliographies and index.

1. Materials—Testing—Congresses. 2. Hardness—Testing—Congresses. 3. Metallography—Congresses.

I. Blau, Peter J. II. Lawn, Brian R. III. American Society for Testing and Materials. Committee E-4 on Metallography. IV. International Metallographic Society. VI. Series.

TA410.M65 1986 620.1'126 85-28577
ISBN 0-8031-0441-3

Copyright © by American Society for Testing and Materials 1985 Library of Congress Catalog Card Number: 85-28577

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.

Foreword

This publication, Microindentation Techniques in Materials Science and Engineering, contains papers presented at the Microindentation Hardness Testing Symposium and Workshop, which was held 15-18 July 1984 in Philadelphia, PA. The event was jointly sponsored by ASTM, through its Committee E-4 on Metallography, and the International Metallographic Society. Chairing the symposium were Peter J. Blau and Brian R. Lawn, both of the National Bureau of Standards, who also served as editors of this publication.

Related ASTM Publications

- Practical Applications of Quantitative Metallography, STP 839 (1984), 04-839000-28
- MiCon 82: Optimization of Processing, Properties, and Service Performance Through Microstructural Control, STP 792 (1983), 04-792000-28
- MiCon 78: Optimization of Processing, Properties, and Service Performance Through Microstructural Control, STP 672 (1979), 04-672000-28
- Damage Tolerance of Metallic Structures: Analysis Methods and Applications, STP 842 (1984), 04-842000-30

A Note of Appreciation to Reviewers

The quality of the papers that appear in this publication reflects not only the obvious efforts of the authors but also the unheralded, though essential, work of the reviewers. On behalf of ASTM we acknowledge with appreciation their dedication to high professional standards and their sacrifice of time and effort.

ASTM Committee on Publications

ASTM Editorial Staff

Helen P. Mahy Janet R. Schroeder Kathleen A. Greene William T. Benzing

Contents

Introduction	1
Fundamentals of Indentation Testing	
Microindentations in Metals—LEONARD E. SAMUELS Discussion	5 25
Indentation of Brittle Materials—DAVID B. MARSHALL AND	26
BRIAN R. LAWN Discussion	26 45
Characterization of Submicrometre Surface Layers by Indentation—	
HUBERT M. POLLOCK, DANIEL MAUGIS, AND MICHEL BARQUINS	47
Vickers Indentation Curves of Elastoplastic Materials—	
JEAN L. LOUBET, JEAN M. GEORGES, AND GERARD MEILLE	72
Measurement of Hardness at Indentation Depths as Low as	
20 Nanometres—w. c. oliver, r. hutchings, and j. b. pethica	90
Dislocation Aspects of Plastic Flow and Cracking at Indentations in Magnesium Oxide and Cyclotrimethylenetrinitramine	
Explosive Crystals—ronald w. armstrong and wayne l. elban	109
Techniques and Measurement	
Indentation Hardness and Its Measurement: Some Cautionary	
Comments—DAVID TABOR	129
Use of the Indentation Size Effect on Microhardness for Materials	
Characterization—PHILIP M. SARGENT	160

Stress and Load Dependence of Microindentation Hardness— FRANZ H. VITOVEC	175
Fabrication and Certification of Electroformed Microhardness Standards—DAVID R. KELLEY, CHRIS E. JOHNSON, AND DAVID S. LASHMORE	186
Use of the Scanning Electron Microscope in Microhardness Testing of High-Hardness Materials—ROBERT M. WESTRICH	196
Engineering Applications	
Applications of Microindentation Methods in Tribology Research— PETER J. BLAU	209
Review of Scratch Test Studies of Abrasion Mechanisms— THOMAS H. KOSEL	227
Microindentation Hardness Measurements on Metal Powder Particles—t. ROBERT SHIVES AND LEONARD C. SMITH	243
Indentation Hardness of Surface-Coated Materials—OLOF VINGSBO, STURE HOGMARK, BO JÖNSSON, AND ANDERS INGEMARSSON	257
Indentation Test for Polymer-Film-Coated Computer Board Substrate—Peter A. Engel and Mark D. Derwin	272
Knoop Microhardness Testing of Paint Films—walter w. walker	286
Summary	
Summary	293
Author Index	297
Subject Index	299