Work Item
ASTM WK74640

New Test Method for Load Control Thermomechanical Actuation Cycling of Shape Memory Alloys

1. Scope

The scope of activity within the Committee shall be the advancement of knowledge and understanding of fatigue and fracture phenomena by:

* Promoting research and development of, and education related to, methods to evaluate the fatigue and fracture characteristics of materials and structures;
* Developing standards, proposals, and, when necessary, emergency standards for evaluating fatigue and fracture behavior. The preparation of Standard Practices, Guides, Terminology, and Test Methods is included in this development;
* Sponsoring technical meetings and symposia either independently or cooperatively with other organizations;
* Coordinating the Committee's activities with those of organizations having mutual interests, including other relevant ASTM Committees and non-ASTM organizations.
The range of Committee interest includes all engineering applications in which materials, processed parts, components or complete assemblies are subjected to loadings that might result in degradation of material or loss of structural integrity. Specific areas of interest include:

* All phenomena related to cyclic deformation, damage accumulation, crack formation, crack growth, and fracture of either materials or structures;
* Physical deformation and fracture mechanisms;
* Constitutive modeling, stress and strain analysis ranging from global to local (e.g., the crack-tip vicinity), and fracture mechanics analysis;
* Models that relate loading, deformation, configuration and damage parameters to life and residual strength behavior;
* Fatigue and fracture behavior of welded, fastened, and bonded components or assemblies of metallic or composite materials;
* Relationships between fatigue and fracture behavior and: (a) material characteristics (e.g., microstructure; thermo-mechanical history; residual stresses), (2) design details (e.g., stress concentrations; construction methods) and (3) operational details (e.g., quality control procedures; fretting; wear; mechanical, chemical, thermal, and radiation environment); and
* Methods and procedures, including statistical analysis, by which fatigue and fracture characteristics may be described, evaluated, and detected.


shape memory alloy; actuator; fatigue; thermomechanical cycle;


While there exists a broad range of potential applications for Shape Memory Alloy (SMA)actuators, their transition to production is hindered by alack of accepted industry and regulatory testing andcertification standard. In addition tothe recently published ASTM standards (E3097 and E3098) thatdescribe test methods to evaluate actuator and shape memory effect properties, test methods for thermomechanical cycling and fatigue are needed. End users, suppliers, and researchers need a standardized method for extended cycling to evaluate actuation durability of new and existing materials, quality control, and to develop design allowables.

The title and scope are in draft form and are under development within this ASTM Committee.


Developed by Subcommittee: E08.05

Committee: E08

Staff Manager: Brian Milewski

Work Item Status

Date Initiated: 11-05-2020

Technical Contact: James Mabe

Item: 000