Journal Published Online: 28 April 2022
Volume 50, Issue 4

Experimental and Statistical Investigation of the Bending and Surface Roughness Properties on Three-Dimensional Printing Parts

CODEN: JTEVAB

Abstract

This research is purposed to analyze the bending strength and surface roughness results of polylactic acid samples produced by fused filament fabrication. Using the experimental design method, the effect of fill density, layer thickness, infill, and raster orientation parameters on the bending and surface roughness performance of samples was investigated. In the study, the individual effects and interactions of the main four factors were analyzed using 2331 mixed-level factorial design approaches. Whereas linear and honeycomb filled were preferred in the experimental design, 30°, 60°, and 90° angles were used as raster orientation and 50 % and 100 % were used as fill density. In addition, 0.15 mm and 0.05 mm were printed as layer thicknesses. Samples were tested using a stylus profilometer (Mitutoyo SJ-301) to determine surface roughness characteristics, and the AUTOGRAPH AG-IS 100 KN was utilized to analyze the bending strength of the parts. In addition, fracture surfaces were analyzed by stereo microscope at various magnifications. The data were analyzed using the Minitab 19 software program. The most effective parameter for bending strength is the layer thickness with 40.02 %. In addition, it has been observed that the fast honeycomb fill pattern has higher strength than the linear fill pattern. Inversely to literature, according to our result, when the layer thickness is reduced, the surface roughness increases, because of the bubble on the surface of the printed sample. The results obtained from this study will provide preliminary information to the users in order to produce the parts that will provide the necessary requirements according to the usage area with minimum time and costs.

Author Information

Çelebi, Ahu
Bagyolu mah, Manisa Celal Bayar Universitesi, Sehit Prof. Dr. Ilhan Varank Yerleskesi, Metallurgical and Materials Engineering Department, Yunusemre, Manisa, Turkey
Pages: 14
Price: $25.00
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Stock #: JTE20210682
ISSN: 0090-3973
DOI: 10.1520/JTE20210682