Journal Published Online: 29 January 2019
Volume 47, Issue 3

3D Numerical Analysis of Loading Geometry on Soil Behavior Reinforced with Geocell Element

CODEN: JTEVAB

Abstract

Considering the weakness of the soil profile against tensile forces, researchers have been continuously searching to increase the bearing capacity and shear strength and improve its properties. In some projects, the soil reinforcement method has been known as a proper method for soil improvement because of its low cost, easy implementation, and great impact on soil properties. Reinforced soil is a structure composed of two different types of materials, which minimize their weaknesses together: the soil tolerates compressive stresses, and the reinforcement elements tolerate tensile stresses. In this research, the behavior of circle foundation located on a sand bed reinforced with geocell (GC) elements (which was investigated experimentally) was assessed analytically by using the Abaqus finite element software in three-dimensional (3D) mode as well. After assuring that the results of analytical studies were appropriately correlated with the results of laboratory studies, the behavior of the soil reinforced with GC elements under other square foundations was examined by using analytical studies. The results of this study showed a 65 % increase in bearing capacity and 15 % reduction in the settlement of circle foundation if using GC elements to reinforce the soil profile. The aforementioned has been obtained from comparing the results obtained from analytical and laboratory studies, showing proper matching and alignment between them by changing the geometry of the foundation from circle to square in 3D analytic studies. There was a greater effect on the bearing capacity of square foundations when increasing the GC elements (up to 12 %) than on the bearing capacity of circle foundations. To prove the proposed innovation in this research, some of its outputs were applied for improving the soil under an old one-story building with asymmetric settlement instead of reinforced concrete piles. The settlement was stopped within six months after the completion of the soil improvement operation.

Author Information

Keshmiri, Nojan
Department of Civil Engineering, Azad University, Central Tehran Branch, Tehran, Iran
Ghareh, Soheil
Department of Civil Engineering, Payame Noor University, Tehran, Iran
Kazemian, Sina
Department of Civil Engineering, Payame Noor University, Tehran, Iran
Hosseinian, Amir Reza
Department of Civil Engineering, Shahrood University of Technology, Shahrood, Iran
Pages: 13
Price: $25.00
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Stock #: JTE20180194
ISSN: 0090-3973
DOI: 10.1520/JTE20180194