Journal Published Online: 01 July 2013
Volume 41, Issue 5

Method for Dynamic Material Property Characterization of Soft-Tissue-Mimicking Isotropic Viscoelastic Materials Using Fractional Damping Models



Characterization of the mechanical properties of human-tissue-mimicking silicone elastomers is important for producing accurate tissue models for experimentation. However, the viscoelastic and frequency-dependent material properties of elastomers are difficult to quantify. We present a material characterization technique for a silicone elastomer used to mimic human soft tissue based on generalized-Maxwell-type material models with and without fractional dissipating mechanisms. The silicone specimens were prestressed and had the shape of cylindrical rods. It was possible to consistently identify material properties of all specimen samples from different batches of the material obtained from the manufacturer. As a general trend, material models with a higher number of parameters performed better, with the exception of models with fractional order damping mechanisms. Fractional models had the highest success for nearly all the samples in representing the dynamic behavior of the elastomer in the frequency range of 5–100 Hz, where the specimen structure displays a strong modal response.

Author Information

Martin, Bryn
Conquer Chiari Research Center, The Univ. of Akron, Akron, OH, US
Kutluay, Umit
Defense Industries Research and Development Institute, Ankara, TR
Yazicioglu, Yigit
Dept. of Mechanical Engineering, Middle East Technical Univ., Ankara, TR
Pages: 9
Price: $25.00
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Stock #: JTE20120235
ISSN: 0090-3973
DOI: 10.1520/JTE20120235