Journal Published Online: 01 July 2004
Volume 32, Issue 4

Numerical Analysis for Small Punch Creep Tests by Finite-Element Method

CODEN: JTEVAB

Abstract

A numerical study is presented that simulates small punch creep (SP-C) tests using a finite-element method (FEM). The objective of the present study is to develop a miniaturized testing methodology for high-temperature creep properties. The numerical simulations have been shown to produce deflection versus time curves that are quantitatively similar to the experimental results obtained on tungsten-alloyed 9 % Cr ferritic steels. It is also demonstrated that the numerically predicted curves show the steady state (secondary) creep stage. Furthermore, the numerical simulations reveal that the magnitude of the equivalent stress in the central region of the SP-C specimen shows no significant change with respect to time at the secondary creep stage, supporting the use of the present SP-C testing method to characterize the secondary creep deformation rate. Finally, an approximate equation is proposed for the assessment of the equivalent stress in the SP-C specimen in terms of the load and testing parameters.

Author Information

Zhai, PC
Fracture Research Institute, Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai, Japan State Key Laboratory for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
Hashida, T
Fracture Research Institute, Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai, Japan
Komazaki, S
Muroran Institute of Technology, Muroran, Hokkaido, Japan
Zhang, QJ
State Key Laboratory for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
Pages: 6
Price: $25.00
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Stock #: JTE12250
ISSN: 0090-3973
DOI: 10.1520/JTE12250