Journal Published Online: 24 January 2011
Volume 39, Issue 4

Spatial Distribution of the Compressive Stress-Strain of Recycled Polymeric Piling



Fiber reinforced polymer (FRP) composites represent an alternative construction material without many of the performance disadvantages of traditional construction materials. The use of FRP as a pile material can eliminate deterioration problems of conventional piling materials in water front environments and aggressive soils. Most of the available polymeric piling for light load applications is made of foamed recycled High Density Polyethylene (HDPE). A comprehensive understanding of the mechanical properties of foamed recycled polymers is essential for widespread use of polymeric piling. This paper presents the results of 178 compression tests conducted to assess the in-plane spatial distribution of the compressive strength of piling made of foamed recycled HDPE. Several methods were attempted to predict the stress-strain of the cross section from the compressive strength of small coupons extracted from within the cross section. Comparing the predicted behavior from coupon specimens to the measured behavior obtained by loading the whole cross section illustrates that the approach is promising.

Author Information

Iskander, Magued
Polytechnic Institute of New York Univ., Brooklyn, NY
Bozorg-Haddad, Amir
Polytechnic Institute, Rockaway, NJ
Pages: 12
Price: $25.00
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Stock #: JTE103198
ISSN: 0090-3973
DOI: 10.1520/JTE103198