Cement, Concrete, and Aggregates Table of Contents Volume 15, 1993

No. 1, Summer

A Rapid Method for Measuring the Acid-Soluble Chloride Content of Powdered Concrete Samples—RICHARD E. WEYERS,	
MICHAEL BROWN, IMAD L. AL-QADI, AND MARK HENRY	3
Use of Fly Ash in Heat-Cured Concrete and the Effect of Post-Curing Storage Regimes on Strength, Modulus of Elasticity,	
and Freezing-Thawing Durability—peter M. GIFFORD, BRIAN W. LANGAN, AND MICHAEL A. WARD	14
Effect of Three Zeolite-Containing Natural Pozzolanic Materials on Alkali-Silica Reaction—HONG WANG AND	
JACK E. GILLOTT	24
Evaluation of the Statistical Significance of a Regression and Selection of the Best Regression Using the Coefficient of	
Determination R^2 —GILLES CHANVILLARD, J. PETER JONES, AND PIERRE-CLAUDE AITCIN	31
Use of Dynamic Nondestructive Test Methods to Monitor Concrete Deterioration Due to Alkali-Silica Reaction-	
R. NARAYAN SWAMY AND W. M. RAYMOND WAN	39
Effects of Testing Rate and Age on ASTM C 1018 Toughness Parameters and Their Precision for Steel Fiber-Reinforced	
Concrete—COLIN D. JOHNSTON	50
Evaluation of Cylinder Size and Capping Method in Compression Strength Testing of Concrete—MICHAEL F. PISTILLI AND	
TERRY WILLEMS	59
A Comparison of Two Methods for Measuring the Chloride Ion Permeability of Concrete—RACHEL J. DETWILER AND	
CHRIS A. FAPOHUNDA	7 0
Observations on Rubberized Concrete Behavior—NEIL N. ELDIN AND AHMED B. SENOUCI	74
Technical Note: Development of Precision and Bias Statements for Testing Drilled Cores in Accordance with ASTM	
C 42—GLEN E. BOLLIN	85
Technical Note: Mortar Workability Apparatus: A New Approach—stewart w. tresouthick, val S. dubovoy, and	
JOHN W. GAJDA	89
Testing Forum	93
8	

No. 2, Winter

Aggregate Mixtures for Least-Void Content for Use in Polymer Concrete—v. v. l. KANTHA RAO AND S. KRISHNAMOOTHY		
SYMPOSIUM ON CURRENT TRENDS IN CEMENT STANDARDS		
Introduction to Symposium on Current Trends in Cement Standards—LESLIE J. STRUBLE	108	
Portland Cement Specifications: Performance, Prescription, and Prediction-EUGENE D. HILL, JR. AND		
GEOFFREY FROHNSDORFF	109	
Why Performance Standards for Hydraulic Cement?—RONALD F. GEBHARDT	119	
Importance of Precision Statements in Developing Performance Standards for Cement—TERRY PATZIAS	124	
Analysis of a Canadian Database of Mortar-Cube Strengths: The Move Towards a Canadian Performance Standard for		
Portland Cement—ROBERT L. DAY	128	
Cement Strength and Concrete Strength—An Apparition or a Dichotomy?—RICHARD D. GAYNOR	135	
European (EN) and World (ISO) Standards-Comparison with ASTM Standards-PIERRE DUTRON	145	
International Development of Standards for Cements—PETER J. JACKSON AND JOHN M. LAWTON	149	
Blended Cement According to ENV 197 and Experiences in Germany-MICHAEL SCHMIDT, KLAUS HARR, AND		
RAYMUND BOING	156	
The Special Features of Cement Standards in China—TONG SANDUO	165	
The New Cement Standard in Australia—Its Implication and Further Development—SAMIA GUIRGUIS	170	
Technical Note: A Summary of the Results of Laboratory Inspections Conducted by the Cement and Concrete Reference		
Laboratory—RAYMOND M. KOLOS AND PAUL C. BURNS	174	
Testing Forum	184	
Index	187	

Cement, Concrete, and Aggregates Author Index Volume 15, 1993

Number	Issue	Pages
1	Summer	3-96
2	Winter	97-192

А

- Aitcin, P-C: see Chanvillard, G, Jones, JP, and Aitcin, P-C
- Al-Qadi, IL: see Weyers, RE, Brown, M, Al-Qadi, IL, and Henry, M

B

- Boing, R: see Schmidt, M, Harr, K, and Boing, R
- **Bollin, GE:** Development of precision and bias statements for testing drilled cores in accordance with ASTM C 42, Summer, 85

Brown, M: see Weyers, RE, Brown, M, Al-Qadi, IL, and Henry, M

Burns, PC: see Kolos, RM and Burns, PC

С

Chanvillard, G, Jones, JP, and Aitcin, P-C: Evaluation of the statistical significance of a regression and selection of the best regression using the coefficient of determination R_2 , Summer, 31

D

- Day, RL: Analysis of a Canadian database of mortar-cube strengths: the move toward a Canadian performance standard for portland cement, Winter, 128
- Detwiler, RJ and Fapohunda, CA: Comparision of two methods for measuring the chloride ion permeability of concrete, Summer, 70
- Dubovoy, VS: see Tresouthick, SW, Dubovoy, VS, and Gajda, JW
- Dutron, P: European (EN) and World (ISO) standards—comparison with ASTM standards, Winter, 145

E-F

Eldin, NN and Senouci, AB: Observations on rubberized concrete behavior, Summer, 74

Fapohunda, CA: see Detwiler, RJ and Fapohunda, CA

Frohnsdorff, G: see Hill, ED, Jr. and Frohnsdorff, G

G

- Gajda, JW: see Tresouthick, SW, Dubovoy, VS, and Gajda, JW
- Gaynor, RD: Cement strength and concrete strength—an apparition or a dichotomy?, Winter, 135
- Gebhardt, RF: Why performance standards for hydraulic cement?, Winter, 119
- Gifford, PM, Langan, BW, and Ward, MA: Use of fly ash in heat-cured concrete and the effect of post-curing storage regimes on strength, modulus of elasticity, and freezing-thawing durability, Summer, 14
- Gillott, JE: see Wang, H and Gillott, JE
- Guirguis, S: New cement standards in Australia—its implication and further development, Winter, 170

Н

Harr, K: see Schmidt, M, Harr, K, and Boing, R

- Henry, M: see Weyers, RE, Brown, M, Al-Qadi, IL, and Henry, M
- Hill, ED, Jr. and Frohnsdorff, G: Portland cement specifications: performance, prescription, and prediction, Winter, 109

J

- Jackson, PJ and Lawton, JM: International development of standards for cements, Winter, 149
- Johnston, CD: Effects of testing rate and age on ASTM C 1018 toughness parameters and their precision for steel fiber-reinforced concrete, Summer, 50
- Jones, JP: see Chanvillard, G, Jones, JP, and Aitcin, P-C

K-L

- Kantha Rao, VVL and Krishamoothy, S: Aggregate mixtures for least-void content for use in polymer concrete, Winter, 97
- Kolos, RM and Burns, PC: Summary of the results of laboratory inspections conducted

by the Cement and Concrete Reference Laboratory, Winter, 174

- Krishnamoothy, S: see Kantha Rao, VVL and Krishnamoothy, S
- Langan, BW: see Gifford, PM, Langan, BW, and Ward, MA
- Lawton, JM: see Jackson, PJ and Lawton, JM

Р

- Patzias, T: Importance of precision statements in developing performance standards for cement, Winter, 124
- **Pistilli, MF and Willems, T**: Evaluation of cylinder size and capping method in compression strength testing of concrete, Summer, 59

S-T

- Sanduo, T: Special features of cement standards in China, Winter, 165
- Schmidt, M, Harr, K, and Boing, R: Blended cement according to ENV 197 and experiences in Germany, Winter, 156
- Senouci, AB: see Eldin, NN and Senouci, AB
- Struble, LJ: Introduction to symposium on current trends in cement standards, Winter, 108
- Swamy, RN and Wan, WMR: Use of dynamic nondestructive test methods to monitor concrete deterioration due to alkali-silica reaction, Summer, 39
- Tresouthick, SW, Dubovoy, VS, and Gajda, JW: Mortar workability apparatus: a new approach, Summer, 89

W

- Wan, WMR: see Swamy, RN and Wan, WMR Wang, H and Gillott, JE: Effect of three zeo-
- lite-containing natural pozzolanic materials on alkali-silica reaction, Summer, 24 Ward, MA: see Gifford, PM, Langan, BW, and Ward, MA
- Weyers, RE, Brown, M, Al-Qadi, IL, and Henry, M: Rapid method for measuring the acid-soluble chloride content of powdered concrete samples, Summer, 3
- Willems, T: see Pistilli, MF and Willems, T

Cement, Concrete, and Aggregates Subject Index Volume 15, 1993

A

AASHTO T 277

Comparision of two methods for measuring the chloride ion permeability of concrete (Detwiler, RJ and Fapohunda, CA), Summer, 70

Accelerated curing

Use of fly ash in heat-cured concrete and the effect of post-curing storage regimes on strength, modulus of elasticity, and freezing-thawing durability (Gifford, PM, Langan, BW, and Ward, MA), Summer, 14

Acceptance

Importance of precision statements in developing performance standards for cement (Patzias, T), Winter, 124

Aggregate proportions

Aggregate mixtures for least-void content for use in polymer concrete (Kantha Rao, VVL and Krishamoothy, S), Winter, 97

Alkali-silica reaction (ASR)

- Effect of three zeolite-containing natural pozzolanic materials on alkali-silica reaction (Wang, H and Gillott, JE), Summer, 24
- Use of dynamic nondestructive test methods to monitor concrete deterioration due to alkali-silica reaction (Swamy, RN and Wan, WMR), Summer, 39

ASTM standards

European (EN) and World (ISO) standards-comparison with ASTM standards (Dutron, P), Winter, 145

ASTM test methods

Summary of the results of laboratory inspections conducted by the Cement and Concrete Reference Laboratory (Kolos, RM and Burns, PC), Winter, 174

Australian standards

New cement standards in Australia--its implication and further development (Guirguis, S), Winter, 170

B

Development of precision and bias statements for testing drilled cores in accordance with ASTM C 42 (Bollin, GE), Summer, 85

Blended cement

Bias

- Blended cement according to ENV 197 and experiences in Germany (Schmidt, M, Harr, K, and Boing, R), Winter, 156
- New cement standards in Australia--its implication and further development (Guirguis, S), Winter, 170

Board life

Mortar workability apparatus: a new ap-

proach (Tresouthick, SW, Dubovov, VS, and Gajda, JW), Summer, 89

С

Cement

- Cement strength and concrete strength-an apparition or a dichotomy? (Gaynor, RD), Winter, 135
- Special features of cement standards in China (Sanduo, T), Winter, 165
- **Cement and Concrete Reference Laboratory** Summary of the results of laboratory inspections conducted by the Cement and Concrete Reference Laboratory (Kolos, RM and Burns, PC), Winter, 174

Center line average

- Mortar workability apparatus: a new approach (Tresouthick, SW, Dubovoy, VS, and Gajda, JW), Summer, 89
- China Special features of cement standards in China
- (Sanduo, T), Winter, 165

Chloride

- Comparision of two methods for measuring the chloride ion permeability of concrete (Detwiler, RJ and Fapohunda, CA), Summer, 70
- Rapid method for measuring the acid-soluble chloride content of powdered concrete samples (Weyers, RE, Brown, M, Al-Qadi, IL, and Henry, M), Summer, 3
- Coefficient of determination
- Evaluation of the statistical significance of a regression and selection of the best regression using the coefficient of determination R, (Chanvillard, G, Jones, JP, and Aitcin, P-C), Summer, 31
- **Compressive strength**
- Cement strength and concrete strength--an apparition or a dichotomy? (Gaynor, RD), Winter, 135
- Development of precision and bias statements for testing drilled cores in accordance with ASTM C 42 (Bollin, GE), Summer, 85
- Evaluation of cylinder size and capping method in compression strength testing of concrete (Pistilli, MF and Willems, T), Summer, 59 Concrete
- Cement strength and concrete strength--an apparition or a dichotomy? (Gaynor, RD), Winter, 135
- Development of precision and bias statements for testing drilled cores in accordance with ASTM C 42 (Bollin, GE), Summer. 85
- Effects of testing rate and age on ASTM C 1018 toughness parameters and their pre-

cision for steel fiber-reinforced concrete (Johnston, CD), Summer, 50

- Evaluation of cylinder size and capping method in compression strength testing of concrete (Pistilli, MF and Willems, T), Summer, 59
- Use of dynamic nondestructive test methods to monitor concrete deterioration due to alkali-silica reaction (Swamy, RN and Wan, WMR), Summer, 39
- Use of fly ash in heat-cured concrete and the effect of post-curing storage regimes on strength, modulus of elasticity, and freezing-thawing durability (Gifford, PM, Langan, BW, and Ward, MA), Summer, 14 **Concrete bridges**
- Rapid method for measuring the acid-soluble chloride content of powdered concrete samples (Weyers, RE, Brown, M, Al-Qadi, IL, and Henry, M), Summer, 3 Cores
- Development of precision and bias statements for testing drilled cores in accordance with ASTM C 42 (Bollin, GE), Summer, 85

Corrosion

- Comparision of two methods for measuring the chloride ion permeability of concrete (Detwiler, RJ and Fapohunda, CA), Summer, 70
- Rapid method for measuring the acid-soluble chloride content of powdered concrete samples (Weyers, RE, Brown, M, Al-Qadi, IL, and Henry, M), Summer, 3

Cvlinder size

Evaluation of cylinder size and capping method in compression strength testing of concrete (Pistilli, MF and Willems, T), Summer, 59

D

Durability

- Observations on rubberized concrete behavior (Eldin, NN and Senouci, AB), Summer. 74
- Use of dynamic nondestructive test methods to monitor concrete deterioration due to alkali-silica reaction (Swamy, RN and Wan, WMR), Summer, 39

Е

European standards

- Blended cement according to ENV 197 and experiences in Germany (Schmidt, M, Harr, K, and Boing, R), Winter, 156
- European (EN) and World (ISO) standards-comparison with ASTM standards (Dutron, P), Winter, 145

Importance of precision statements in developing performance standards for cement (Patzias, T), Winter, 124

Expansion

Effect of three zeolite-containing natural pozzolanic materials on alkali-silica reaction (Wang, H and Gillott, JE), Summer, 24

F

Fiber-reinforced

Effects of testing rate and age on ASTM C 1018 toughness parameters and their precision for steel fiber-reinforced concrete (Johnston, CD), Summer, 50

First-crack strength

Effects of testing rate and age on ASTM C 1018 toughness parameters and their precision for steel fiber-reinforced concrete (Johnston, CD), Summer, 50

Fly ash

Use of fly ash in heat-cured concrete and the effect of post-curing storage regimes on strength, modulus of elasticity, and freezing-thawing durability (Gifford, PM, Langan, BW, and Ward, MA), Summer, 14 Fresh mortar

Mortar workability apparatus: a new approach (Tresouthick, SW, Dubovoy, VS, and Gajda, JW), Summer, 89

G-L

Grinding surface ends

- Evaluation of cylinder size and capping method in compression strength testing of concrete
- (Pistilli, MF and Willems, T), Summer, 59 Hydraulic cement
- Why performance standards for hydraulic cement? (Gebhardt, RF), Winter, 119
- **Image analysis**
- Portland cement specifications: performance, prescription, and prediction (Hill, ED, Jr. and Frohnsdorff, G), Winter, 109

Least-void content

Aggregate mixtures for least-void content for use in polymer concrete (Kantha Rao, VVL and Krishamoothy, S), Winter, 97

М

Materials science

Portland cement specifications: performance, prescription, and prediction (Hill, ED, Jr. and Frohnsdorff, G), Winter, 109

Mathematical modeling

Portland cement specifications: performance, prescription, and prediction (Hill, ED, Jr. and Frohnsdorff, G), Winter, 109

Mortar cubes

Analysis of a Canadian database of mortarcube strengths: the move toward a Canadian performance standard for portland cement (Day, RL), Winter, 128

Mortars

Cement strength and concrete strength-an apparition or a dichotomy? (Gaynor, RD), Winter, 135

0

On-site inspections

Summary of the results of laboratory inspections conducted by the Cement and Concrete Reference Laboratory (Kolos, RM and Burns, PC), Winter, 174

Р

Particle interference

Aggregate mixtures for least-void content for use in polymer concrete (Kantha Rao, VVL and Krishamoothy, S), Winter, 97

Performance standards

- Importance of precision statements in developing performance standards for cement (Patzias, T), Winter, 124
- New cement standards in Australia-its implication and further development (Guirguis, S), Winter, 170
- Why performance standards for hydraulic cement? (Gebhardt, RF), Winter, 119

Permeability

Comparision of two methods for measuring the chloride ion permeability of concrete (Detwiler, RJ and Fapohunda, CA), Summer, 70

Portland cement

- Analysis of a Canadian database of mortarcube strengths: the move toward a Canadian performance standard for portland cement (Day, RL), Winter, 128
- Blended cement according to ENV 197 and experiences in Germany (Schmidt, M, Harr, K, and Boing, R), Winter, 156
- Importance of precision statements in developing performance standards for cement (Patzias, T), Winter, 124
- International development of standards for cements (Jackson, PJ and Lawton, JM), Winter, 149
- New cement standards in Australia-its implication and further development (Guirguis, S), Winter, 170

Portland cement specifications: performance, prescription, and prediction (Hill, ED, Jr. and Frohnsdorff, G), Winter, 109 Precast

Use of fly ash in heat-cured concrete and the effect of post-curing storage regimes on strength, modulus of elasticity, and freezing-thawing durability (Gifford, PM, Langan, BW, and Ward, MA), Summer, 14

R

Regression

Evaluation of the statistical significance of a regression and selection of the best regression using the coefficient of determination R2 (Chanvillard, G, Jones, JP, and Aitcin, P-C), Summer, 31

S

Slump

Observations on rubberized concrete behavior (Eldin, NN and Senouci, AB), Summer. 74

Specifications

International development of standards for cements (Jackson, PJ and Lawton, JM), Winter, 149

Standardization trends

Why performance standards for hydraulic eement? (Gebhardt, RF), Winter, 119

Standards

- European (EN) and World (ISO) standards-comparison with ASTM standards (Dutron, P), Winter, 145
- International development of standards for cements (Jackson, PJ and Lawton, JM), Winter, 149
- Introduction to symposium on current trends in cement standards (Struble, LJ), Winter, 108
- Special features of cement standards in China (Sanduo, T), Winter, 165

Statistical analysis

- Analysis of a Canadian database of mortarcube strengths: the move toward a Canadian performance standard for portland cement (Day, RL), Winter, 128
- Evaluation of the statistical significance of a regression and selection of the best regression using the coefficient of determination R, (Chanvillard, G, Jones, JP, and Aitcin, P-C), Summer, 31

Steel fibers

Effects of testing rate and age on ASTM C 1018 toughness parameters and their precision for steel fiber-reinforced concrete (Johnston, CD), Summer, 50

Strength

Analysis of a Canadian database of mortarcube strengths: the move toward a Canadian performance standard for portland eement (Day, RL), Winter, 128

Swelling

Observations on rubberized concretc behavior (Eldin, NN and Senouci, AB), Summer, 74

W-Z

Workability

Observations on rubberized concrete behavior (Eldin, NN and Senouci, AB), Summer, 74

World standards

24

European (EN) and World (ISO) standards-comparison with ASTM standards (Dutron, P), Winter, 145 Zeolite

Effect of three zeolite-containing natural pozzolanic materials on alkali-silica reac-

tion (Wang, H and Gillott, JE), Summer,