Geotechnical Testing Journal Subject Index Volume 19, 1996

A-B

Adsorption isotherm

Discussion on "Geo-environmental assessment of a micaceous soil for its potential use as an engineered clay barrier" by A. M. O. Mohamed, R. N. Yong, B. K. Tan, A. Farkas, and L. W. Curtis, (Bajracharya, K, Barry, DA, and Culligan, PJ), Dec., 452

Advection-dispersion equation

Discussion on "Geo-environmental assessment of a micaceous soil for its potential use as an engineered clay barrier" by A. M. O. Mohamed, R. N. Yong, B. K. Tan, A. Farkas, and L. W. Curtis, (Bajracharya, K, Barry, DA, and Culligan, PJ), Dec., 452

Aggregate

Grain-size distribution of mixed aggregates (Windisch, EJ), June, 227

Air volume change measurement

Air volume change measurement in unsaturated soil testing using a digital pressure-volume controller, (Adams, BA, Wulfsohn, D, and Fredlund, DG), March, 12

Airflow

Proposed standard test method for measurement of pneumatic permeability of partially saturated porous materials by flowing air (Eischens, G and Swanson, A), June, 232

Anchoring

Laboratory testing apparatus for slopes stabilized by anchored geosynthetics, (Ghiassian, H, Hryciw, RD, and Gray, DH), March, 65

Atterberg Limits

Method of rapid determination of the plasticity index of calcareous materials used in road construction (Melachrinos, B), Dec., 438

Automation

Using an automated rowe cell for cinstant rate of strain consolidation testing (Sheahan, TC and Watters, PJ), Dec., 354

Measuring anisotropic elastic properties of sand using a large triaxial specimen, (Hoque, E, Tatsuoka F, and Sato, T), Dec., 411

Bentonite

Determining bentonite content in soilbentonite mixtures using electrical conductivity (Abu-Hassanein, ZS, Benson, CH, Wang, X, and Blotz, LR), March, 51

Boundary conditions

Model size effects in centrifuge models of granular slope instability (Goodings, DJ and Gillette, DR), Sept., 277

Brazilian test

High-temperature Brazilian test for tensile strength of metamorphic limestone, (Lee, D-H, Juang, CH, and Lei, I-M), June, 223

Bulk density

Rock porosity determinations using particle densities measured in different fluids (Passas, N, Butenuth, C, de Freitas, MH, and Bunatova, V), Sept., 310

C-D

Calcareous sands

Tests on model jacked piles in calcareous sand (Chin, JT and Poulos, HG), June, 164

Capillary phenomena

Advances in conductometric phase transition porosimetry (Gunnink, BW), March, 74

Cement-treated soils

Evaluation of sulfate expansion in soilcements (Ksaibati, K and Huntington, GS), Sept., 269

Centrifuges

Thermally controlled test chamber for centrifuge and laboratory experiments, (Stone, KJL, Smith, CC, and Schofield, AN), Dec., 441

Centrifuge testing of fixed-head laterally loaded battered and plumb pile groups in sand, (McVay, MC, Shang, T-I, and Casper, R), March, 41

Classification

Simplification of soil classification charts derived from the cone penetration test (Zhang, Z and Tumay, MT), June, 203

Clays

Method of rapid determination of the plasticity index of calcareous materials used in road construction (Melachrinos, B), Dec., 438

Using an automated rowe cell for constant rate of strain consolidation testing (Sheahan, TC and Watters, PJ), Dec., 354

Study of strike-slip faulting using small-scale models (Lazarte, CA and Bray, JD), June, 118

Consolidation behavior of clayey soils under radial drainage, (Sridharan, A, Prakash, K, and Asha, SR), Dec., 421

Clay shales

Constant volume ring shear apparatus (Stark, TD and Contreras, IA), March, 3

Clay structure

Advances in conductometric phase transition porosimetry (Gunnink, BW), March, 74

Coal mine wastes

Comparison of gas and water pycnometry of coal mine wastes (Morris, PH and Williams, DJ), March, 95

Coaxial cable

Water pressure measurement with time domain reflectometry cables, (Dowding, CH, Huang, F-C, and McComb, PS), March, 58

Coefficient of consolidation

Determination of coefficient of consolidation from early stage of log t plot (Robinson, RG and Allam, MM), Sept., 316

Consolidation behavior of clayey soils under radial drainage, (Sridharan, A, Prakash, K, and Asha, SR), Dec., 421

Coefficient of permeability

Analysis of hydraulic gradient effects for laboratory hydraulic conductivity testing (Fox, PJ), June, 181

Direct and indirect permeability of fissured tills (Hossain, D), June, 191

Compressibility testing

Consolidation behavior of clayey soils under radial drainage, (Sridharan, A, Prakash, K, and Asha, SR), Dec., 421

Compressive waves

Measurement of shear waves in laboratory specimens by means of piezoelectric

© 1996 by the American Society for Testing and Materials

transducers, (Brignoli, EGM, Gotti, M, and Stokoe, KH, II), Dec., 384

Conductometric phase transition porosimetry

Advances in conductometric phase transition porosimetry (Gunnink, BW), March, 74

Cone penetration tests

Simplification of soil classification charts derived from the cone penetration test (Zhang, Z and Tumay, MT), June, 203

Conformal mapping

Simplification of soil classification charts derived from the cone penetration test (Zhang, Z and Tumay, MT), June, 203

Consolidation

Using an automated rowe cell for cinstant rate of strain consolidation testing (Sheahan, TC and Watters, PJ), Dec., 354

Consolidation apparatus for testing unsaturated soils (Rahardjo, H and Fredlund, DG), Dec., 341

Direct and indirect permeability of fissured tills (Hossain, D), June, 191

Cyclic loading

Tests on model jacked piles in calcareous sand (Chin, JT and Poulos, HG), June, 164

Degree of consolidation

Determination of coefficient of consolidation from early stage of log t plot (Robinson, RG and Allam, MM), Sept., 316

Diffusion test

New technique for diffusion testing of unsaturated soil, (Barbour, SL, Lim, PC, and Fredlund, DG), Sept., 247

Digital pressure-volume controller

Air volume change measurement in unsaturated soil testing using a digital pressure-volume controller, (Adams, BA, Wulfsohn, D, and Fredlund, DG), March, 12

Direct shear testing

Automated apparatus for three-dimensional monotonic and cyclic testing of interfaces (Fakharian, K and Evgin, E), March, 22

Drainage systems

Consolidation behavior of clayey soils under radial drainage, (Sridharan, A, Prakash, K, and Asha, SR), Dec., 421

Drilled shafts

Large-scale model testing of laterally loaded drilled shafts in sand, (Agaiby, SW, Kulhawy, FH, and Trautmann, CH), March, 32

E-G

Earthquakes

Study of strike-slip faulting using small-scale models (Lazarte, CA and Bray, JD), June, 118

Electrical conductivity

Determining bentonite content in soilbentonite mixtures using electrical conductivity (Abu-Hassanein, ZS, Benson, CH, Wang, X, and Blotz, LR), March, 51

Measurements of soluble salt content of soils from arid and semi-arid regions (Karakouzian, M, Pitchford, A, Leonard, M, and Johnson, B), Dec., 364

Environmental conditions

Thermally controlled test chamber for centrifuge and laboratory experiments, (Stone, KJL, Smith, CC, and Schofield, AN), Dec., 441

Failure

Model size effects in centrifuge models of granular slope instability (Goodings, DJ and Gillette, DR), Sept., 277

Faults

Study of strike-slip faulting using small-scale models (Lazarte, CA and Bray, JD), June. 118

Field tests

Effect of rib spacing on deformation of profile-wall plastic pipes buried in coarse granular backfill, (Sargand, S, Masada, T, and Hurd, JO), June, 217

Fine-grained soils

Direct and indirect permeability of fissured tills (Hossain, D), June, 191

Flow pump

Rigorous theoretical analysis of a flow pump permeability test (Esaki, T, Zhang, M, Takeshita, A, and Mitani, Y), Sept., 241

Foundations

Large-scale model testing of laterally loaded drilled shafts in sand, (Agaiby, SW, Kulhawy, FH, and Trautmann, CH), March, 32

Free-field

Device for the measurement of sub-surface ground vibrations, (Leong, EC, Cheong, HK, and Pan, TC), Sept., 286

Friction

Discussion on "A dual interface apparatus for testing unrestricted friction of soil along surfaces" by S. G. Paikowsky, C. M. Player, and P. J. Connors, (Subba Rao, KS, Allam, MM, and Robinson, RG), Dec., 446

Gas pycnometry

Comparison of gas and water pycnometry of coal mine wastes (Morris, PH and Williams, DJ), March, 95

Geotextile

Cylindrical expansion test for tensile properties of geotextiles, (Salman, AG, Juran, I, and Potnis, A), Dec., 432

Gradation

Grain-size distribution of mixed aggregates (Windisch, EJ), June, 227

Grain size

Model size effects in centrifuge models of granular slope instability (Goodings, DJ and Gillette, DR), Sept., 277

Granular materials

Discussion on "A dual interface apparatus for testing unrestricted friction of soil along surfaces" by S. G. Paikowsky, C. M. Player, and P. J. Connors, (Subba Rao, KS, Allam, MM, and Robinson, RG), Dec., 446

Automated determination of the distribution of local void ratio from digital images (Frost, JD and Kuo, C-Y), June, 107

H-J

Helium

Comparison of gas and water pycnometry of coal mine wastes (Morris, PH and Williams, DJ), March, 95

Hydraulic conductivity

Analysis of hydraulic gradient effects for laboratory hydraulic conductivity testing (Fox, PJ), June, 181

Hydraulic gradient

Analysis of hydraulic gradient effects for laboratory hydraulic conductivity testing (Fox, PJ), June, 181

Image analysis

Automated determination of the distribution of local void ratio from digital images (Frost, JD and Kuo, C-Y), June, 107

In situ measurement

Flexible strain gage for soil testing (Li, XS), Sept., 305

Inductance

Flexible strain gage for soil testing (Li, XS), Sept., 305

Inorganic chemicals

New technique for diffusion testing of unsaturated soil, (Barbour, SL, Lim, PC, and Fredlund, DG), Sept., 247

Interface testing

Automated apparatus for three-dimensional monotonic and cyclic testing of interfaces (Fakharian, K and Evgin, E), March, 22

Interlaboratory testing

Interlaboratory Program for Rock Properties: Round two—Confined compression: Young's Modulus, Poisson's Ratio, and ultimate strength (Pincus, HJ), Sept., 321

Interlaboratory Program for Rock Properties: Round three—Repeatability and

Reproducibility of RQD Values for Selected Sedimentary Rocks (Pincus, HJ and Clift, SJ), Dec., 457

Jacked piles

Tests on model jacked piles in calcareous sand (Chin, JT and Poulos, HG), June, 164

L-M

Laboratory testing

Discussion on "A dual interface apparatus for testing unrestricted friction of soil along surfaces" by S. G. Paikowsky, C. M. Player, and P. J. Connors, (Subba Rao, KS, Allam, MM, and Robinson, RG), Dec., 446

Laboratory evaluation of horizontal stress in overconsolidated sands (Abdi, H and Garga, VK), March, 85

Landfills

Determining bentonite content in soilbentonite mixtures using electrical conductivity (Abu-Hassanein, ZS, Benson, CH, Wang, X, and Blotz, LR), March, 51

Lateral loads

Centrifuge testing of fixed-head laterally loaded battered and plumb pile groups in sand, (McVay, MC, Shang, T-I, and Casper, R), March, 41

Latex coil

Flexible strain gage for soil testing (Li, XS), Sept., 305

Lightweight fill

Engineering properties of tire/soil mixtures as a lightweight fill material (Masad, E, Taha, R, Ho, C, and Papagiannakis, T), Sept., 297

Limestones

Method of rapid determination of the plasticity index of calcareous materials used in road construction (Melachrinos, B), Dec., 438

Loading

Consolidation apparatus for testing unsaturated soils (Rahardjo, H and Fredlund, DG), Dec., 341

Local void ratio

Automated determination of the distribution of local void ratio from digital images (Frost, JD and Kuo, C-Y), June, 107

Marine sediments

Multi-sensor piezometer for shallow marine sediments in coastal environments (Andersen, GR, Bennett, RH, Barber, ME, Todorovski, L, and Maynard, GL), Dec., 373

Matric suction sensor

Consolidation apparatus for testing unsaturated soils (Rahardjo, H and Fredlund, DG), Dec., 341

Grain-size distribution of mixed aggregates (Windisch, EJ), June, 227

Model test

Thermally controlled test chamber for centrifuge and laboratory experiments, (Stone, KJL, Smith, CC, and Schofield, AN), Dec., 441

Large-scale model testing of laterally loaded drilled shafts in sand, (Agaiby, SW, Kulhawy, FH, and Trautmann, CH), March, 32

Moisture

Coupled heat and moisture flow in unsaturated swelling clay barriers (Mohamed, AMO, Yong, RN, Onofrei, CI, and Kjartanson, BH), June, 155

N-P

Near-field effect

Measurement of shear waves in laboratory specimens by means of piezoelectric transducers, (Brignoli, EGM, Gotti, M, and Stokoe, KH, II), Dec., 384

Necking

Effects of shear band formation in triaxial extension tests, (Lade, PV, Yamamuro, JA, and Skyers, BD), Dec., 398

Nitrogen

Comparison of gas and water pycnometry of coal mine wastes (Morris, PH and Williams, DJ), March, 95

Ottawa sand

Engineering properties of tire/soil mixtures as a lightweight fill material (Masad, E, Taha, R, Ho, C, and Papagiannakis, T), Sept., 297

Overconsolidation

Laboratory evaluation of horizontal stress in overconsolidated sands (Abdi, H and Garga, VK), March, 85

Particle density

Rock porosity determinations using particle densities measured in different fluids (Passas, N, Butenuth, C, de Freitas, MH, and Bunatova, V), Sept., 310

Pavements

Alternative test method for resilient modulus of fine-grained subgrades (Drumm, EC, Li, Z, Reeves, JS, and Madgett, MR), June, 141

Peak strength

Automated apparatus for three-dimensional monotonic and cyclic testing of interfaces (Fakharian, K and Evgin, E), March, 22

Permeability

Proposed standard test method for measurement of pneumatic permeability of partially saturated porous materials by flowing air (Eischens, G and Swanson, A), June, 232

Rigorous theoretical analysis of a flow pump permeability test (Esaki, T, Zhang, M, Takeshita, A, and Mitani, Y), Sept.,

Physical models

Study of strike-slip faulting using smallscale models (Lazarte, CA and Bray, JD), June, 118

Piezometer probe

Multi-sensor piezometer for shallow marine sediments in coastal environments (Andersen, GR, Bennett, RH, Barber, ME, Todorovski, L, and Maynard, GL), Dec., 373

Pile groups

Centrifuge testing of fixed-head laterally loaded battered and plumb pile groups in sand, (McVay, MC, Shang, T-I, and Casper, R), March, 41

Plastic pipe

Effect of rib spacing on deformation of profile-wall plastic pipes buried in coarse granular backfill, (Sargand, S, Masada, T, and Hurd, JO), June, 217

Plasticity

Method of rapid determination of the plasticity index of calcareous materials used in road construction (Melachrinos, B), Dec., 438

Pneumatic permeability

Proposed standard test method for measurement of pneumatic permeability of partially saturated porous materials by flowing air (Eischens, G and Swanson, A), June, 232

Pore pressure

Multi-sensor piezometer for shallow marine sediments in coastal environments (Andersen, GR, Bennett, RH, Barber, ME, Todorovski, L, and Maynard, GL), Dec., 373

Porosity

Rock porosity determinations using particle densities measured in different fluids (Passas, N, Butenuth, C, de Freitas, MH, and Bunatova, V), Sept., 310

Profile wall

Effect of rib spacing on deformation of profile-wall plastic pipes buried in coarse granular backfill, (Sargand, S, Masada, T, and Hurd, JO), June, 217

R-S

Residual strength

Automated apparatus for three-dimensional monotonic and cyclic testing of interfaces (Fakharian, K and Evgin, E), March, 22

Constant volume ring shear apparatus (Stark, TD and Contreras, IA), March, 3

Resilient modulus

Alternative test method for resilient modulus of fine-grained subgrades (Drumm, EC, Li, Z, Reeves, JS, and Madgett, MR), June, 141

Sand

Measuring anisotropic elastic properties of sand using a large triaxial specimen, (Hoque, E, Tatsuoka F, and Sato, T), Dec., 411

Large-scale model testing of laterally loaded drilled shafts in sand, (Agaiby, SW, Kulhawy, FH, and Trautmann, CH), March, 32

Laboratory evaluation of horizontal stress in overconsolidated sands (Abdi, H and Garga, VK), March, 85

Laboratory testing apparatus for slopes stabilized by anchored geosynthetics, (Ghiassian, H, Hryciw, RD, and Gray, DH), March, 65

Saturation

Measurements of soluble salt content of soils from arid and semi-arid regions (Karakouzian, M, Pitchford, A, Leonard, M, and Johnson, B), Dec., 364

Secondary compression

Determination of coefficient of consolidation from early stage of log t plot (Robinson, RG and Allam, MM), Sept., 316

Shear wave

Measurement of shear waves in laboratory specimens by means of piezoelectric transducers, (Brignoli, EGM, Gotti, M, and Stokoe, KH, II), Dec., 384

Shear strength

Relationship between the soil-water characteristic curve and the unsaturated shear strength of a compacted glacial till, (Vanapalli, SK, Fredlund, DG, and Pufahl, DE), Sept., 259

Shear banding

Effects of shear band formation in triaxial extension tests, (Lade, PV, Yamamuro, JA, and Skyers, BD), Dec., 398

Slopes

Model size effects in centrifuge models of granular slope instability (Goodings, DJ and Gillette, DR), Sept., 277

Soft clays

Constant volume ring shear apparatus (Stark, TD and Contreras, IA), March, 3

Soil cement

Evaluation of sulfate expansion in soilcements (Ksaibati, K and Huntington, GS), Sept., 269

Soil-bentonite mixtures

Determining bentonite content in soilbentonite mixtures using electrical conductivity (Abu-Hassanein, ZS, Benson, CH, Wang, X, and Blotz, LR), March, 51

Soil structure

Advances in conductometric phase transition porosimetry (Gunnink, BW), March, 74

Solubility

Measurements of soluble salt content of soils from arid and semi-arid regions (Karakouzian, M, Pitchford, A, Leonard, M, and Johnson, B), Dec., 364

Stabilization

Laboratory testing apparatus for slopes stabilized by anchored geosynthetics, (Ghiassian, H, Hryciw, RD, and Gray, DH), March, 65

Standardization

Update of the history of ASTM committee D-18 on soil and rock (1987–1996) (Gray, R and Stephenson, R), Dec., 463

Stress state

Relationship between the soil-water characteristic curve and the unsaturated shear strength of a compacted glacial till, (Vanapalli, SK, Fredlund, DG, and Pufahl, DE), Sept., 259

Subgrades

Alternative test method for resilient modulus of fine-grained subgrades (Drumm, EC, Li, Z, Reeves, JS, and Madgett, MR), June, 141

Subsurface investigations

Device for the measurement of sub-surface ground vibrations, (Leong, EC, Cheong, HK, and Pan, TC), Sept., 286

Sulfate expansion

Evaluation of sulfate expansion in soilcements (Ksaibati, K and Huntington, GS), Sept., 269

Swelling

Coupled heat and moisture flow in unsaturated swelling clay barriers (Mohamed, AMO, Yong, RN, Onofrei, CI, and Kjartanson, BH), June, 155

T-U

Temperature

High-temperature Brazilian test for tensile strength of metamorphic limestone, (Lee, D-H, Juang, CH, and Lei, I-M), June, 223

Thermally controlled test chamber for centrifuge and laboratory experiments, (Stone, KJL, Smith, CC, and Schofield, AN), Dec., 441

Coupled heat and moisture flow in unsaturated swelling clay barriers (Mohamed, AMO, Yong, RN, Onofrei, CI, and Kjartanson, BH), June, 155

Tensile strength

High-temperature Brazilian test for tensile strength of metamorphic limestone, (Lee, D-H, Juang, CH, and Lei, I-M), June, 223

Tensile test

Cylindrical expansion test for tensile properties of geotextiles, (Salman, AG, Juran, I, and Potnis, A), Dec., 432

Testing machines

Wave propagation in soils: multi-mode, wide-band testing in a waveguide device (Fratta, D and Santamarina, JC), June, 130

Theoretical analysis

Rigorous theoretical analysis of a flow pump permeability test (Esaki, T, Zhang, M, Takeshita, A, and Mitani, Y), Sept., 241

Time domain reflectometry

Water pressure measurement with time domain reflectometry cables, (Dowding, CH, Huang, F-C, and McComb, PS), March, 58

Tire chips

Engineering properties of tire/soil mixtures as a lightweight fill material (Masad, E, Taha, R, Ho, C, and Papagiannakis, T), Sept., 297

Triaxial extension

Effects of shear band formation in triaxial extension tests, (Lade, PV, Yamamuro, JA, and Skyers, BD), Dec., 398

Triaxial testing

Measuring anisotropic elastic properties of sand using a large triaxial specimen, (Hoque, E, Tatsuoka F, and Sato, T), Dec., 411

Alternative test method for resilient modulus of fine-grained subgrades (Drumm, EC, Li, Z, Reeves, JS, and Madgett, MR), June, 141

Uniform strains

Effects of shear band formation in triaxial extension tests, (Lade, PV, Yamamuro, JA, and Skyers, BD), Dec., 398

Unsaturated soils

Consolidation apparatus for testing unsaturated soils (Rahardjo, H and Fredlund, DG), Dec., 341

Air volume change measurement in unsaturated soil testing using a digital pressure-volume controller, (Adams, BA, Wulfsohn, D, and Fredlund, DG), March, 12

Coupled heat and moisture flow in unsaturated swelling clay barriers (Mohamed, AMO, Yong, RN, Onofrei, CI, and Kjartanson, BH), June, 155

Relationship between the soil-water characteristic curve and the unsaturated shear strength of a compacted glacial till, (Vanapalli, SK, Fredlund, DG, and Pufahl, DE), Sept., 259

New technique for diffusion testing of unsaturated soil, (Barbour, SL, Lim, PC, and Fredlund, DG), Sept., 247

Vibrations

Device for the measurement of sub-surface ground vibrations, (Leong, EC, Cheong, HK, and Pan, TC), Sept., 286

W

Water pressure

Water pressure measurement with time domain reflectometry cables, (Dowding,

CH, Huang, F-C, and McComb, PS), March, 58

Wave propagation

Wave propagation in soils: multi-mode, wide-band testing in a waveguide device (Fratta, D and Santamarina, JC), June, 130

Wide width strip test

Cylindrical expansion test for tensile properties of geotextiles, (Salman, AG, Juran, I, and Potnis, A), Dec., 432