Geotechnical Testing Journal Index to Volume 9 1986

Number	Month of Issue	Pages
1	March	1-48
2	June	49-116
3	September	117-166
4	December	167-242

A

- Alarcon, A., and Chameau, J. L., and Leonards, G. A.: A new apparatus for investigating the stress-strain characteristics of sands, Dec., 204
- Aggour, M. S.: see Amer, M. I., Aggour, M. S., and Kovacs, W. D.
- Amer, M. I., Aggour, M. S., and Kovacs, W. D.: Testing using a large-scale cyclic simple shear device, Sept., 140
- Armstrong, J. C. and Petry, T. M.: Significance of specimen preparation upon soil plasticity, Sept., 147
- ASTM Subcommittee D18.02: Suggested method for performing the flat dilatometer test, June, 93
- Atterberg limits: Significance of specimen preparation upon soil plasticity (Armstrong and Petry), Sept., 147

В

- Bauer, G. E.: see Felio, G. Y. and Bauer, G.
- Bloomquist, D. G.: see Davidson, J. L. and Bloomquist, D. G.
- Book Review: Handbook of Physical Properties of Rocks by R. S. Carmichael (Wang), March, 46
- Borehole stabilization: Influence of borehole stabilization techniques on standard penetration test results (Whited and Edil), Dec., 180
- Bouvard, D. and Stutz, P.: Experimental study of rheological properties of a sand using a special triaxial apparatus, March, 10
- Briaud, J.-L.: see Felio, G. Y. and Briaud, J.-L.
- Brown, S. F.: see Shaw, P. and Brown, S. F. Buck, W.: Report on the International Symposium on Kurst Water Resources, June, 11.3

C

- Campanella, R. G.: see Robertson, P. K. and Companella, R. G.
- Calibrations: Factors affecting the performance of a pneumatic earth pressure cell (Felio and Bauer), June, 102
- Coyright © 1986 by ASTM International

- Capillary pressures: Discussion of "Evaluation of Soil Suction Components" by T. B. Edil and S. E. Motan (Richards, Emerson, and Peter), March, 41
- Carpenter, G. W. and Stephenson, R. W.:
 Permeability testing in the triaxial cell,
 March. 3

Centrifuges

- Determination of ice forces with centrifuge models (Clough, Kurst, and Vinson), June, 49
- Effect of boundary conditions upon centrifuge experiments using ground motion simulation (Whitman and Lambe), June, 61
- A new boundary stress transducer for small soil models in the centrifuge (Pang), June. 72
- Chameau, J. L.: see Alarcon, A., Chameau, J. L., and Leonards, G. A.
- Chemical analysis: The application of multivariate statistics and saturation extract data to identify dispersive clay soils (Craft), March, 34

Clays

- The application of multivariate statistics and saturation extract data to identify dispersive clay soils (Craft), March, 34
- Discussion of "Evaluation of Soil Suction Components" by T. B. Edil and S. E. Motan (Richards, Emerson, and Peter), March, 41
- A new technique to evaluate erosivity of cohesive material (Rohan, Lefebvre, Douville, and Milette), June, 87
- A rapid method to identify clay type in soils by the free-swell technique (Sridharan, Rao, and Murthy), Dec., 198
- Swelling pressure of clays (Sridharan, Rao, and Sivapullaiah), March, 24
- Clough, H. F., Kurst, P. L., and Vinson, T. S.: Determination of ice forces with centrifuge models, June, 49

Compaction

- Characteristic threshold and infrared vibrothermography of sand (Pang), June, 80
- Swelling pressure of clays (Sridharan, Rao, and Sivapullaiah), March, 24
- Compressive strength: Development of an erosion test for soil cement (Oswell and Joshi), March, 19
- Cone penetrometer: Effect of cementation on the cone penetration resistance of sand: a model study (Rad and Tumay), Sept., 117
- Crack propagation: Development of an index to quantify rock texture for qualitative assessment of intact rock properties (Howarth and Rowlands), Dec., 169
- Craft, D.: The application of multivariate statistics and saturation extract data to identify dispersive clay soils, March, 34

D

- Damping: Testing using a large-scale cyclic simple shear device (Amer, Aggour, and Kovacs), Sept., 140
- Davidson, J. L. and Bloomquist, D. G.: New equipment and techniques for use with the Cambridge self-boring pressuremeter (Davidson and Bloomquist), June, 107
- Dilatancy: Characteristic threshold and infrared vibrothermography of sand (Luong), June, 80
- Dilatometer tests: Suggested method for performing the flat dilatometer test (ASTM Subcommittee 18.02), June, 93
- Direct shear tests: Cyclic simple shear testing of granular materials (Shaw and Brown), Dec., 213
- Douville, S.: see Rohan, K., Lefebvre, G., Douville, S., and Millette, J.-P.
- Drill holes: Influence of borehole stabilization techniques on standard penetration test results (Whited and Edil), Dec., 180

Drnevich, V. P.

Editorial, Dec., 167 Editorial, March, 2

50th Anniversary Celebration of Committee D-18, Dec., 226

E

- Earth pressure cell: Factors affecting the performance of a pneumatic earth pressure cell (Felio and Bauer), June, 102
- Earthquakes: Effect of boundary conditions upon centrifuge experiments using ground Motan simulation (Whitman and Lambe), June, 61
- Edil, T. B.: see Whited, G. C. and Edil, T. B. Emerson, W. W.: see Richards, B. G., Emerson, W. W., and Peter, P.
- Erosion: A new technique to evaluate erosivity of cohesive material (Rohan, Lefebvre, Douville, and Milette), June, 87
- Erosion tests: Development of an erosion test for soil cement (Oswell and Joshi), March, 19
- Evans, J. C. and Fang, H.-Y.: Triaxial equipment for permeability testing with hazardous and toxic permeants, Sept., 126

F

- Fang, H.-Y.: see Evans, J. C. and Fang, H.-Y.
- Felio, G. Y. and Bauer, G. E.: Factors affecting the performance of a pneumatic earth pressure cell, June, 102
- Felio, G. Y. and Briaud, J.-L.: Procedure for rod shear test, Sept., 133

- Flat plate dilatometer: Estimating liquefaction potential of sands using the flat plate dilatometer (Robertson and Campanella), March, 38
- Frozen soils: Discussion of "Repeated Load Triaxial Testing of Frozen and Thawed Soils" by D. M. Cole, G. Durrell, and E. Chamberlain (Youssef) Dec., 221

Н

- Hazardous wastes: Triaxial equipment for permeability testing with hazardous and toxic permeants (Evans and Fang), Sept., 126
- Holtz, R. D., II: see Juang, C. H. and Holtz, R. D., II
- Howarth, D. F. and Rowlands, J. C.: Development of an index to quantify rock texture for qualitative assessment of intact rock properties, Dec., 169
- Hydraulic conductivity: Triaxial equipment for permeability testing with hazardous and toxic permeants (Evans and Fang), Sept., 126

I

Ice: Determination of ice forces with centrifuge models (Clough, Kurst, and Vinson), lune, 49

In-situ testing

- Estimating liquefaction potential of sands using the flat plate dilatometer (Robertson and Campanella), March, 38
- A new equipment and techniques for use with the Cambridge self-boring pressuremeter (Davidson and Bloomquist), June, 107

J

- Joshi, R. C.: see Oswell, J. M. and Joshi, R.
- Juang, C. H. and Holtz, R. D., II: Preparation of specimens of noncohesive material for mercury intrusion porosimetry, Sept., 154

K-L

- Kovacs, W. D.: see Amer, M. I., Aggour, M. S., and Kovacs, W. D.
- Kurst, P. L.: see Clough, H. F., Kurst, P. L., and Vinson, T. S.

Laboratory testing

- Testing using a large-scale cyclic simple shear device (Amer, Aggour, and Kovacs), Sept., 140
- Triaxial equipment for permeability testing with hazardous and toxic permeants (Evans and Fang), Sept., 140
- Lambe, P. C.: see Whitman, R. V. and Lambe, P. C.
- Lefebvre, G.: see Rohan, K., Lefebvre, G., Douville, S., and Millete, J.-P.
- Leonards, G. A.: see Alarcon, A., Chameau, J. L., and Leonards, G. A.
- Liquid limit: Significance of specimen preparation upon soil plasticity (Armstrong and Petry), Sept., 147
- Liquefaction: Estimating liquefaction potential of sands using the flat plate dilatometer (Robertson and Campanella), March, 38

Luong, M. P.: Characteristic threshold and infrared vibrothermography of sand, June, 80

M

- Mercury intrusion porosimetry: Preparation of specimens of noncohesive material for mercury intrusion porosimetry (Juang and Holtz), Sept., 154
- Milette, J.-P.: see Rohan, K., Lefebvre, G., Douville, S., and Milette, J.-P.
- Model tests: Effect of boundary conditions upon centrifuge experiments using ground motion simulation (Whitman and Lambe), June, 61
- Montmorillonite: Liquid limit of montmorillonite soils (Sridharan, Rao, and Murthy), Sept., 156
- Multivariate statistics: The application of multivariate statistics and saturation extract data to identify dispersive clay soils (Craft), March, 34
- Murthy, N. S.: see Sridharan, A., Rao, S. M., and Murthy, N. S.
- Muster, G. L., II and O'Neill, M. W.: Dynamically loaded pile overconsolidated clay, Dec., 189

N-0

- Noncohesive material: Preparation of specimens of noncohesive material for mercury intrusion porosimetry (Juang and Holtz), Sept., 154
- O'Neill, M. W.: see Muster, G. L., II and, O'Neill, M. W.
- Oswell, J. M. and Joshi, R. C.: Development of an erosion test for soil cement, March, 19
- Overconsolidated clays: Dynamically loaded pile in overconsolidated clay (Muster and O'Neill), Dec., 189

P

- Pang, P. L. R.: A boundary stress transducer for small soil models in the centrifuge, June, 72
- Penetration rig: New equipment and techniques for use with the Cambridge self-boring pressuremeter (Davidson and Bloomquist), June, 107
- Penetration tests: Suggested method for performing the flat dilatometer test (ASTM Subcommittee 18.02), June, 93
- Permeability: Permeability testing in the triaxial cell (Carpenter and Stephenson), March, 3
- Peter, P.: see Richards, B. G., Emerson, W. W., and Peter, P.
- Petry, T. M.: see Armstrong, J. C. and Petry, T. M.
- Pile driving: Dynamically loaded pile in overconsolidated clay (Muster and O'Neill), Dec., 189
- Pile friction: Procedure for a rod shear test (Felio and Briaud), Sept., 133

Piles

- Determination of ice forces with centrifuge models (Clough, Kurst, and Vinson), June, 49
- Dynamically loaded pile in overconsolidated clay (Muster and O'Neill), Dec., 189

- Plastic limit: Significance of specimen preparation upon soil plasticity (Armstrong and Petry), Sept., 147
- Pore size distribution: Preparation of specimens of noncohesive material for mercury intrusion porosimetry (Juang and Holtz), Sept., 154
- Pressure cells: A new boundary stress transducer for small soil models in the centrifuge (Pang), June, 72
- Pressures: Suggested method for performing the flat dilatometer test (ASTM Subcommittee 18.02), June, 93

R

- Rad, N. S. and Tumay, M. T.: Effect of cementation on the cone penetration resistance of sand: a model study, Sept., 117
- Rao, A. R.
 - see Sridharan, A., Rao, S. M., and Murthy, N. S.
- see Sridharan, A., Rao, A. R., and Sivapullaiah, P. V.
- Relative density: Effect of cementation on the cone penetration resistance of sand: a model study (Rad and Tumay), Sept., 117
- Richards, B. G., Emerson, W. W., and Peter, P.: Discussion of "Evaluation of Soil Suction Components" by T. B. Edil and S. E. Motan, March, 41
- Robertson, P. K. and Campanella, R. G.: Estimating liquefaction potential of sands using the flat plate dilatometer, March, 38
- Rock texture: Development of an index to quantify rock texture for qualitative assessment of intact rock properties (Howarth and Rowlands), Dec., 169
- Rocks: Development of an index to quantify rock texture for qualitative assessment of intact rock properties (Howarth and Rowlands), 169
- Rod shear test: Procedure for a rod shear test (Felio and Briaud), Sept., 133
- Rohan, K., Lefebvre, G., Douville, S., and Milette, J.-P.: A new technique to evaluate erosivity of cohesive material, June, 87
- Rowlands, J. C.: see Howarth, D. F. and Rowlands, J. C.

S

Sands

- Effect of cementation on the cone penetration resistance of sand: a model study (Rad and Tumay), Sept., 117
- Estimating liquefaction potential of sands using the flat plate dilatometer (Robertson and Campanella), March, 38
- Experimental study of rheological properties of a sand using a special triaxial apparatus (Bouvard and Stutz), March, 10
- A new apparatus for investigating the stressstrain characteristics of sands (Alarcon, Chameau, and Leonards), Dec., 204
- Testing using a large-scale cyclic simple shear device (Amer, Aggour, and Kovacs), Sept., 140
- Schmertmann, J. H.: Suggested method for performing the flat dilatometer test (ASTM Subcommittee D18.02), June, 93
- Shaw, P. and Brown, S. F.: Cyclic simple

- shear testing of granular materials, Dec.,
- Shear apparatus: Cyclic simple shear testing of granular materials (Shaw and Brown), Dec., 213
- Shear stress: Cyclic simple shear testing at granular materials (Shaw and Brown), Dec., 213
- Shear tests: Procedure for a rod shear test (Felio and Briaud), Sept., 133
- Shockley, W. G.
 - Comments from the chairman of Committee D-18, Dec., 226
 - Update of the History of ASTM Committee D-18, Dec., 228
- Sivapullaiah, P. V.: see Sridharan, A., Rao, A. S., and Sivapullaiah, P. V.
- Soil cement: Development of an erosion test for soil cement (Oswell and Joshi), March, 19
- Soil mechanics: A new boundary stress transducer for small soil models in the centrifuge (Pang), June, 72
- Soil tests: Permeability testing in the triaxial cell (Carpenter and Stephenson), March, 3 Soils
 - The application of multivariate statistics and saturation extract data to identify dispersive clay soils (Craft), March, 34
 - Discussion of "Evaluation of Soil Suction Components" by T. B. Edil and S. E. Motan (Richards, Emerson, and Peter), March. 41
 - Liquid limit of montmorillonite soils (Sridharan, Rao, and Murthy), Sept., 156
 - A rapid method to identify clay type in soils by the free-swell technique (Sridharan, Rao, and Murthy), Dec., 198
- Sridharan, A., Rao, S. M., and Murthy, N. S. Liquid limit of montmorillonite soil, Sept., 156

- A rapid method to identify clay type in soils by the free-swell technique, Dec., 198
- Sridharan, A., Rao, A. S., and Sivapullaiah,
 P. V.: Swelling pressure of clays, March, 24
 Stephenson, R. W.: see Carpenter, G. W. and Stephenson, R. W.
- Standard penetration test: Influence of borehole stabilization techniques on standard penetration test results (Whited and Edil), Dec., 180
- Stress: Factors affecting the performance of a pneumatic earth pressure cell (Felio and Bauer). June. 102
- Stress-strain curves: Experimental study of rheological properties of a sand using a special triaxial apparatus (Bouvard and Stutz), March, 10
- Stutz, P.: see Bouvard, D. and Stutz, P. Swelling: Swelling pressure of clays (Sridharan, Rao, and Sivapullaiah), March, 24
- Swelling index: A rapid method to identify clay type in soils by the free-swell technique (Sridharan, Rao, and Murthy), Dec., 198

Т

- Test procedures: A new technique to evaluate erosivity of cohesive material (Rohan, Lefebvre, Douville, nd Millette), June, 87
- Thawed soils: Discussion of "Repeated Load Triaxial Testing of Frozen and Thawed Soils" by D. M. Cole, G. Durrell, and E. Chamberlain (Youssef), Dec., 221
- Torsion shear tests: A rapid apparatus for investigating the stress-strain characteristics of sands (Alarcon, Chameau, Leonards), Dec., 204
- Torsional shear apparatus: A new apparatus for investigating the stress-strain characteristics of sands (Alarcon, Chameau, and Leonards), Dec., 204

Triaxial tests

- Characteristic threshold and infrared vibrothermography of sand (Luong), June, 80
- Discussion of "Repeated Load Triaxial Testing of Frozen and Thawed Soils" by D. M. Cole, G. Durrell, and E. Chamberlain (Youssef), Dec. 221
- Experimental study of rheological properties of a sand using a special triaxial apparatus (Bouvard and Stutz), March, 10
- Permeability testing in the triaxial cell (Carpenter and Stephenson), March, 3
- Tumay, M. T.: see Rad, N. S. and Tumay, M. T.

V

Vinson, T. S.: see Clough, H. F., Kurst, P. L., and Vinson, T. S.

W-Z

- Wang, H. F.: Review of Handbook of Physical Properties of Rocks by R. S. Carmichael, March, 46
- Whited, G. C. and Edil, T. B.: Influence of borehole stabilization techniques on standard penetration test results (Whited and Edil), Dec., 180
- Whitman, R. V. and Lambe, P. C.: Effect of boundary conditions upon centrifuge experiments using ground motion simulation, June, 61
- Youssef, H.: Discussion of "Repeated Load Triaxial Testing of Frozen and Thawed Soils" by D. M. Cole, G. Durrell, and E. Chamberlain, Dec., 221