Cement, Concrete, and Aggregates Index to Volume 12 1990

Number	Issue	Pages
1	Summer	3-60
2	Winter	61–128

A

Abrasion loss: Laboratory Evaluation of Wet and Dry Abrasion Resistance of Cement Mortar (Fwa and Low), Winter, 101

Abrasion resistance

Laboratory Evaluation of Wet and Dry Abrasion Resistance of Cement Mortar (Fwa and Low), Winter, 101

Mechanical Properties, Abrasion Resistance, and Chloride Permeability of Concrete Incorporating Blast-Furnace Slag (Fernandez and Malhotra), Winter, 87

Abrasion test: Laboratory Evaluation of Wet and Dry Abrasion Resistance of Cement Mortar (Fwa and Low), Winter, 101

Acceleration: Molybdenum Trioxide—an Accelerator of Portland Cement Hydration (Fischer), Summer, 53

Air curing: Mechanical Properties, Abrasion Resistance, and Chloride Permeability of Concrete Incorporating Blast-Furnace Slag (Fernandez and Malhotra), Winter, 87

Air voids: Practical Considerations Pertaining to the Microscopical Determination of Air Void Characteristics of Hardened Concrete (ASTM C 457 Standard) (Pleau, Plante, Gagne, and Pigeon), Summer, 3

Aitcin, P.-C.: see Mehta, P. K. and Aitcin, P.-C. C.

Aitcin, P.-C.: see Sarkar, S., Aitcin, P.-C., and Djellouli, H.

Al-Mana, Al: see Maslehuddin, M., Al-Mana, A. I., Saricimen, H., and Shamim, M

Al-Obaid, Y. F.: The Creep of Concrete Pipes in Kuwait, Winter, 114.

Anisotropy: Anisotropy of Concrete Strength (Leshchinsky), Winter, 117

B

Blast-furnace slag: Corrosion of Reinforcing Steel in Concrete Containing Slag or Pozzolans (Maslehuddin, Al-Mana, Saricimen, and Shamim), Summer, 24

Blended cements: Corrosion of Reinforcing Steel in Concrete Containing Slag or Pozzolans (Maslehuddin, Al-Mana, Saricimen, and Shamim), Summer, 24

Building codes: Determination of Concrete Strength by Nondestructive Methods (Leshchinsky), Winter, 107

Copyright © 1990 by ASTM International

C

Chloride-ion permeability: Mechanical Properties, Abrasion Resistance, and Chloride Permeability of Concrete Incorporating Blast-Furnace Slag (Fernandez and Malhotra), Winter, 87

Compressive strength

Diagnostic Criteria for Anisotropy of Concrete Strength (Leshchinsky), Winter, 117

Determination of Concrete Strength by Nondestructive Methods (Leshchinsky), Winter, 107

Concrete pipes: The Creep of Concrete Pipes in Kuwait (Al-Obaid), Winter, 114.

Concrete strength: Principles Underlying Production of High-Performance Concrete (Mehta and Aitcin), Winter, 70

Cores: Determination of Concrete Strength by Nondestructive Methods (Leshchinsky), Winter, 107

Corrosion: Corrosion of Reinforcing Steel in Concrete Containing Slag or Pozzolans (Maslehuddin, Al-Mana, Saricimen, and Shamim), Summer, 24

Creep: The Creep of Concrete Pipes in Kuwait (Al-Obaid), Winter, 114.

Czarnecki, B. and Gillott, J. E.: The Effect of Mix Design on the Properties of Sulfur Concrete, Winter, 79

n

De Larrard, F: A Method for Proportioning High-Strength Concrete Mixtures, Summer, 47

Djellouli, H: see Sarkar, S., Aitcin, P.-C., and Djellouli, H.

Douglas, E., Elola, A., and Malhotra, V.M.: Characterization of Ground Granulated Blast-Furnace Slags and Fly Ashes and Their Hydration in Portland Cement Blends, Summer, 38

Durability: Principles Underlying Production of High-Performance Concrete (Mehta and Aitcin), Winter, 70

E

Elola, A: see Douglas, E., Elola, A., and Malhotra, V. M.

F

Feng, N.-Q., Li, G.-Z., and Zang, X.-W.: High-Strength and Flowing Concrete with a Zeolitic Mineral Admixture, Winter, 61.

Fernandez, L. and Malhotra, V. M.: Mechanical Properties, Abrasion Resistance, and Chloride Permeability of Concrete Incorporating Blast-Furnace Slag, Winter, 87

Fischer, H. C.: Molybdenum Trioxide—an Accelerator of Portland Cement Hydration, Summer, 53

Fly ash: Characterization of Ground Granulated Blast-Furnace Slags and Fly Ashes and Their Hydration in Portland Cement Blends (Douglas, Elola, and Malhotra), Summer, 38

Freezing and thawing: Practical Considerations Pertaining to the Microscopical Determination of Air Void Characteristics of Hardened Concrete (ASTM C 457 Standard) (Pleau, Plante, Gagne, and Pigeon), Summer, 3

Fwa, T. F. and Low, E. W.: Laboratory Evaluation of Wet and Dry Abrasion Resistance of Cement Mortar, Winter, 101

0

Gagne, R.: see Pleau, R., Plante, P., Gagne, R., and Pigeon, M.

Gillott, J. E.: see Czarnecki, B. and Gillott,

Glycerin admixture: The Effect of Mix Design on the Properties of Sulfur Concrete (Czarnecki and Gillott), Winter, 79

Gray, R. J.: Results of an Interlaboratory Concrete Testing Program: Part I, Summer. 12

Ground granulated blast-furnace slag: Characterization of Ground Granulated Blast-Furnace Slags and Fly Ashes and Their Hydration in Portland Cement Blends (Douglas, Elola, and Malhotra), Summer, 38

H

High-strength concrete: A Method for Proportioning High-Strength Concrete Mixtures (de Larrard), Summer, 47

I–J

Impermeability: Principles Underlying Production of High-Performance Concrete (Mehta and Aitcin), Winter, 70

Interlaboratory testing program: Results of an Interlaboratory Concrete Testing Program: Part I (Gray), Summer, 12

K

King Faisal Road: The Creep of Concrete Pipes in Kuwait (Al-Obaid), Winter, 114.

L

Leshchinsky, A. M.: Anisotropy of Concrete Strength, Winter, 117

- Leshchinsky, A. M.: Determination of Concrete Strength by Nondestructive Methods, Winter, 107
- Li, G.-Z.: see Feng, N.-Q., Li, G.-Z., and Zang, X.-W.
- Low, E. W.: see Fwa, T. F. and Low, E. W.

M

- Malhotra, V. M.: see Douglas, E., Elola, A., and Malhotra, V. M.
- Maslehuddin, M., Al-Mana, A. I., Saricimen, H., and Shamim, M.: Corrosion of Reinforcing Steel in Concrete Containing Slag or Pozzolans, Summer, 24
- Mehta, P. K. and Aitcin, P.-C. C.: Principles Underlying Production of High-Performance Concrete, Winter, 70
- Microscopical examination: Practical Considerations Pertaining to the Microscopical Determination of Air Void Characteristics of Hardened Concrete (ASTM C 457 Standard) (Pleau, Plante, Gagne, and Pigeon), Summer, 3
- Mix proportions: A Method for Proportioning High-Strength Concrete Mixtures (de Larrard), Summer, 47
- Mix segregation: Anisotropy of Concrete Strength (Leshchinsky), Winter, 117
- Molybdenum trioxide: Molybdenum trioxide—an Accelerator of Portland Cement Hydration (Fischer), Summer, 53

N-0

Natural zeolite: High-Strength and Flowing Concrete with a Zeolitic Mineral Admixture (Feng, Li, and Zang), Winter, 61.

P-0

- Particle size distribution: Characterization of Ground Granulated Blast-Furnace Slags and Fly Ashes and Their Hydration in Portland Cement Blends (Douglas, Elola, and Malhotra), Summer, 38
- Pigeon, M.: see Pleau, R., Plante, P., Gagne, R., and Pigeon, M.
- Plante, P.: see Pleau, R., Plante, P., Gagne, R., and Pigeon, M.
- Pleau, R., Plante, P., Gagne, R., and Pigeon, M.: Practical Considerations Pertaining to the Microscopical Determination of Air Void Characteristics of Hardened Concrete (ASTM C 457 Standard). Summer. 3
- Portland cement hydration: Molybdenum Trioxide—an Accelerator of Portland Cement Hydration (Fischer), Summer, 53

R

Rheological models: A Method for Proportioning High-Strength Concrete Mixtures (de Larrard), Summer, 47

S-T-U

- Saricimen, H.: see Maslehuddin, M., Al-Mana, A. I., Saricimen, H., and Shamim, M
- Sarkar, S., Aitcin, P.-C., and Djellouli, H.: Synergistic Roles of Slag and Silica Fume in Very High-Strength Concrete, Summer, 32
- Shamin, M.: see Maslehuddin, M., Al-Mana, A. I., Saricimen, H., and Shamim, M.
- Silane admixtures: The Effect of Mix Design on the Properties of Sulfur Concrete (Czarnecki and Gillott), Winter, 79

- Silica fume: Synergistic Roles of Slag and Silica Fume in Very High-Strength Concrete (Sarkar, Aitcin, and Djellouli), Summer, 32
- Slag: Synergistic Roles of Slag and Silica Fume in Very High-Strength Concrete (Sarkar, Aitcin, and Djellouli), Summer, 32
- Sulfur concrete: The Effect of Mix Design on the Properties of Sulfur Concrete (Czarnecki and Gillott), Winter, 79

v

- Variability: Results of an Interlaboratory Concrete Testing Program: Part I (Gray), Summer, 12
- Very high-strength concrete: Synergistic Roles of Slag and Silica Fume in Very High-Strength Concrete (Sarkar, Aitcin, and Djellouli), Summer, 32

W-X-Y

Within- and between-laboratory: Results of an Interlaboratory Concrete Testing Program: Part I (Gray), Summer, 12

7.

- Zang, X.-W.: see Feng, N.-Q., Li, G.-Z., and Zang, X.-W.
- Zeolitic mineral admixture: High-Strength and Flowing Concrete with a Zeolitic Mineral Admixture (Feng, Li, and Zang), Winter, 61.
- ZMA: High-Strength and Flowing Concrete with a Zeolitic Mineral Admixture (Feng, Li, and Zang), Winter, 61.