Cement, Concrete, and Aggregates Index to Volume 11 1989

Number	Issue	Pages
	Summer	3-80
2	Winter	81-132

A

- Absi-Halabi, M.: see Lahalih, S. M., Dairanieh, I. S., Absi-Halabi, and Ali, A. M. Admixtures
- Testing and Evaluation of a Novel Melamine-Based Superplasticizer in Concrete (Lahalih, Dairanieh, Absi-Halabi, and Ali), Summer, 15
- Effect of Different Admixtures on the Strength of Sulphur Concrete (Czarnecki and Gillot), Winter, 109.

Aggregate

- NA₂SO₄ Soundness Test Evaluation (Sheftick), Summer, 73.
- Drying Shrinkage of Glass Fiber Reinforced Concrete (Al-Obaid), Winter, 119.

Air content

- Behavior of Cement-Reduced and "Flowing" Fresh Concretes Containing Conventional Water-Reducing and "Second-Generation" High-Range Water-Reducing Admixtures (Whiting and Dziedzic), Summer, 30
- Some Recent Problems with Air-Entrained Concrete (Hover), Summer, 67
- **Air-entrained concrete:** Some Recent Problems with Air-Entrained Concrete (Hover), Summer, 67
- Air-entrained voids: The Morphology of Air-Entrained Voids at an Early Age (Rashed, Monteiro, Williamson, and Bastacky), Winter, 126.
- Aitcin, P.-C.: see Asselanis, J. G., Aitcin, P.-C., and Mehta, P. K.
- Aitcin, P.-C.: see Moukwa, M., Aitcin, P.-C., and Regourd, M.
- Ali, A. M.: see Lahalih, S. M., Dairanieh, I. S., Absi-Halabi, and Ali, A. M.
- Al-Obaid, Y. F.: Drying Shrinkage of Glass Fiber Reinforced Concrete, Winter, 119.
- Asselanis, J. G., Aitcin, P.-C., and Mehta, P. K.: Effect of Curing Conditions on the Compressive Strength and Elastic Modulus of Very High-Strengh Concrete, Summer, 80

B

- Bastacky, J.: see Rashed, A. I., Monteiro, P. J. M., Williamson, R. B., and Bastacky, J.
- Copyright © 1989 by ASTM International

Bazant, Z. P., Chern, J.-C., and Wu, Y.-G.: Basic Creep Formula for Aging Concrete: Sinh-Double Power Law, Winter, 85.

Bleeding: Behavior of Cement-Reduced and "Flowing" Fresh Concretes Containing Conventional Water-Reducing and "Second-Generation" High-Range Water-Reducing Admixtures (Whiting and Dziedzic), Summer, 30

С

- Carino, N. J., Jennings, H. J. M., and Snell, L. M.: Properties of Concrete at Early Ages, Winter, 129.
- Carino, N. J. and Tank, R. C.: Statistical Characteristics of New Pin Penetration Test, Winter, 100.
- **Cement mortars:** A Damage Model for Sulfate Attack of Cement Mortars (Ouyang), Winter, 92.
- **Chemical admixtures:** Another Look at the Portland Cement/Chemical Admixture Incompatibility Problem (Dodson and Hayden), Summer, 52
- Chern, J.-C.: see Bazant, Z. P., Chern, J.-C., and Wu, Y.-G.
- Chung, H.-W.: On Testing of Very Short Concrete Specimens, Summer, 40
- **Coarse aggregate:** Freeze-Thaw Testing of Coarse Aggregate in Concrete: Procedures Used by Michigan Department of Transportation and Other Agencies (Vogler and Grove), Summer, 57
- **Compressive strength:** Statistical Characteristics of New Pin Penetration Test (Carino and Tank), Winter, 100
- Compressive tests: On Testing of Very Short Concrete Specimens (Chung), Summer, 40 Concrete
 - Basic Creep Formula for Aging Concrete: Sinh-Double Power Law (Bazant, Chern, and Wu), Winter, 85.
 - Statistical Characteristics of New Pin Penetration Test (Carino and Tank), Winter, 100
 - Observations of Healing of Cracks in High-Strength Lightweight Concrete (Mor, Monteiro, and Hester), Winter, 121.
 - Properties of Concrete at an Early Age (Carino, Jennings, and Snell), Winter, 129.
- **Concrete aggregate:** Freeze-Thaw Testing of Coarse Aggregate in Concrete: Procedures Used by Michigan Department of Transportation and Other Agencies (Vogler and Grove), Summer, 57

Concrete strength

On Testing of Very Short Concrete Specimens (Chung), Summer, 40.

Effect of Different Admixtures on the

Strength of Sulphur Concrete (Czarnecki and Gillot), Winter, 109.

- **Cracking:** Observations of Healing of Cracks in High-Strength Lightweight Concrete (Mor, Monteiro, and Hester), Winter, 121.
- Creep: Basic Creep Formula for Aging Concrete: Sinh-Double Power Law (Bazant, Chern, and Wu), Winter, 85
- Curing: Effect of Curing Conditions on the Compressive Strength and Elastic Modulus of Very High-Strength Concrete (Asselanis, Aitcin, and Mehta), Summer, 80
- **Cyclic loading:** Observations of Healing of Cracks in High-Strength Lightweight Concrete (Mor, Monteiro, and Hester), Winter, 121.
- Czarnecki, B. and Gillott, J. E.: Effect of Different Admixtures on the Strength of Sulphur Concrete, Winter, 109.

D

- Dairanieh, I. S.: see Lahalih, S. M., Dairanieh, I. S., Absi-Halabi, M., and Ali, A. M.
- **Dodson, V. H. and Hayden, T. D.:** Another Look at the Portland Cement/Chemical Admixture Incompatibility Problem, Summer, 52
- Drill core analysis: On Testing of Very Short Concrete Specimens (Chung), Summer, 40 Durability
- Durability of Concrete under Simulated Arctic Conditions (Moukwa, Aitcin, and Regourd), Summer, 45
- NA2SO4 Soundness Test Evaluation (Sheftick), Summer, 73
- **Dziedzic, W.:** see Whiting, D. and Dziedzic, W.

E

- Early age concrete: Properties of Concrete at an Early Age (Carino, Jennings, and Snell), Winter, 129.
- Elastic modulus: Effect of Curing Conditions on the Compressive Strength and Elastic Modulus of Very High-Strength Concrete (Asselanis, Aitcin, and Mehta), Summer, 80
- Entrained air: Some Recent Problems with Air-Entrained Concrete (Hover), Summer, 67

F

False set: Another Look at the Portland Cement/Chemical Admixture Incompatibility Problem (Dodson and Hayden), Summer, 52 Freeze-thaw testing: Freeze-Thaw Testing of Coarse Aggregate in Concrete: Procedures Used by Michigan Department of Transportation and Other Agencies (Vogler and Grove), Summer, 57

G

- Gel space ratio: A Damage Model for Sulfate Attack of Cement Mortars (Ouyang), Winter, 92.
- Gillott, J. E.: see Czarnecki, B. and Gillott, J. E.
- **Glass fiber:** Drying Shrinkage of Glass Fiber Reinforced Concrete (Al-Obaid), Winter, 119.
- Grove, G. H.: see Vogler, R. H. and Grove, G. H.

H-J

- Hayden, T. D.: see Dodson, V. H. and Hayden, T. D.
- Hester, W. T.: see Mor, A., Monteiro, P. J. M., and Hester, W. T.
- High-Range Water Reducer: Behavior of Cement-Reduced and "Flowing" Fresh Concretes Containing Conventional Water-Reducing "Second-Generation" High-Range Water-Reducing Admixtures (Whiting and Dziedzic), Summer, 30
- High-strength concrete: Effect of Curing Conditions on the Compressive Strength and Elastic Modulus of Very High-Strength Concrete (Asselanis, Aitcin, and Mehta), Summer, 80
- Hover, K. C.: Some Recent Problems with Air-Entrained Concrete, Summer, 67
- Jennings, J. M.: see Carino, N. J., Jennings, H. J. M., and Snell, L. M.
- Johnston, C. D.: Effects on Flexural Performance of Sawing Plain Concrete and of Sawing and Other Methods of Altering the Degree of Fiber Alignment in Fiber-Reinforced Concrete, Summer, 23

K

Knab, L. I. and Spring, C. B.: Evaluation of Test Methods for Measuring the Bond Strength of Portland Cement Based Repair Materials to Concrete, Summer, 3

L

Lahalih, S. M., Dairanieh, I. S., Absi-Halabi, M., and Ali, A. M.: Testing and Evaluation of a Novel Melamine-Based Superplasticizer in Concrete, Summer, 15

M

Mehta, P. K.: see Asselanis, J. G., Aitcin, P.-C., and Mehta, P. K.

Microstructure

- Durability of Concrete under Simulated Arctic Conditions (Moukwa, Aitcin, and Regourd), Summer, 45.
- The Morphology of Air-Entrained Voids at an Early Age (Rashed, Monteiro, Williamson, and Bastacky), Winter, 126.
- Properties of Concrete at an Early Age (Carino, Jennings, and Snell), Winter, 129.
- Monteiro, P. J. M.: see Mor, A., Monteiro, P. J. M., and Hester, W. T. Monteiro, P. J. M.: see Rashed, A. I., Mon-
- Monteiro, P. J. M.: see Rashed, A. I., Monteiro, P. J. M., Williamson, R. B., and Bastacky, J.
- Mor, A., Monteiro, P. J. M., and Hester, W. T.: Observations of Healing of Cracks in High-Strength Lightweight Concrete, Winter, 121.
- Moukwa, M., Aitcin, P.-C., and Regourd, M.: Durability of Concrete under Simulated Arctic Conditions, Summer, 45

N-O

- Ouyang, C.: A Damage Model for Sulfate Attack of Cement Mortars, Winter, 92.
- **Overlaying:** Evaluation of Test Methods for Measuring the Bond Strength of Portland Cement Based Repair Materials to Concrete (Knab and Spring), Summer, 3

P-Q

- Patching: Evaluation of Test Methods for Measuring the Bond Strength of Portland Cement Based Repair Materials to Concrete (Knab and Spring), Summer, 3
- **Penetration test:** Statistical Characteristics of New Pin Penetration Test (Carino and Tank), Winter, 100

Portland cement

- Another Look at the Portland Cement/ Chemical Admixture Incompatibility Problem (Dodson and Hayden), Summer, 52
- Evaluation of Test Methods for Measuring the Bond Strength of Portland Cement Based Repair Materials to Concrete (Knab and Spring), Summer, 3

R

- Rashed, A. I., Monteiro, P. J. M., Williamson, R. B., and Bastacky, J.: The Morphology of Air-Entrained Voids at an Early Age, Winter, 126.
- Regourd, M.: see Moukwa, M., Aitcin, P.-C., and Regourd, M.

S

Scanning electron microscope: The Mor-

phology of Air-Entrained Voids at an Early Age (Rashed, Monteiro, Williamson, and Bastacky), Winter, 126.

- Seawater: Durability of Concrete under Simulated Arctic Conditions (Moukwa, Aitcin, and Regourd), Summer, 45
- Sheftick, W.: Na₂SO₄ Soundness Test Evaluation, Summer, 73
- Shrinkage: Drying Shrinkage of Glass Fiber Reinforced Concrete (Al-Obaid), Winter, 119.
- Snell, L. M.: see Carino, N. J., Jennings, H. J. M., and Snell, L. M.
- Soundness: NA₂SO₄ Soundness Test Evaluation (Sheftick), Summer, 73
- Spring, C. B.: see Knab, L. I. and Spring, C. B.
- Sulfate attack: A Damage Model for Sulfate Attack of Cement Mortars (Ouyang), Winter, 92.
- Sulfonated resins: Testing and Evaluation of a Novel Melamine-Based Superplasticizer in Concrete (Lahalih, Dairanieh, Absi-Halabi, and Ali), Summer, 15
- Sulphur: Effect of Different Admixtures on the Strength of Sulphur Concrete (Czarnecki and Gillot), Winter, 109.
- Superplasticizers: Testing and Evaluation of a Novel Melamine-Based Superplasticizer in Concrete (Lahalih, Dairanieh, Absi-Halabi, and Ali), Summer, 15

Т

Tank, R. C.: see Carino, N. J. and Tank, R. C.

U-V

- Viscoelasticity: Basic Creep Formula for Aging Concrete: Sinh-Double Power Law (Bazant, Chern, and Wu), Winter, 85
- Vogler, R. H. and Grove, G. H.: Freeze-Thaw Testing of Coarse Aggregate in Concrete: Procedures Used by Michigan Department of Transportation and Other Agencies, Summer, 57

W--Z

- Whiting, D. and Dziedzic, W.: Behavior of Cement-Reduced and "Flowing" Fresh Concretes Containing Conventional Water-Reducing and "Second-Generation" High-Range Water-Reducing Admixtures, Summer, 30
- Williamson, R. B.: see Rashed, A. I., Monteiro, P. J. M., Williamson, R. B., and Bastacky, J.
- Wu, Y.-G.: see Bazant, Z. P., Chern, J.-C., and Wu, Y.-G.