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Environmental Effects on Composite Materials 

Reviewed by K. L. Reifsnider, Virginia Polytechnic Insthute and 
State University, Blaeksburg, VA, coeditor of  the Review. 

REFERENCE: Springer, G. S., Ed., Environmental Effects on Com- 
posite Materials, Technornic, Westport, CT, 1981, 203 pages, $28.00. 

This book is a compilation of articles written previously by the 
editor and his co-workers and published in the Journal of  Com- 
posite Materials. Two chapters of new material have been in- 
cluded: one is a summary and the other provides numerical pro- 
cedures and computer codes for calculating moisture diffusion 
through single and multilayered laminates. A subject index also 
appears. The editor suggests that  the collection of articles should 
be "useful to engineers and scientists interested in the effects of 
moisture and temperature on composite materials." Topics 
discussed (article titles) include: 

• Thermal Conductivities of Unidirectional Materials 
• Moisture Absorption and Desorption of Composite Materials 
• Moisture Absorption of Graphite-Epoxy Composition Im- 

mersed in Liquids and in Humid Air 
• Moisture Absorption of Polyester-E Glass Composites 
• Moisture Content of Composites Under  Transient Conditions 
• Effects of Moisture and Temperature on the Tensile Strength 

of Composite Materials 
• Environmental Effects on the Elastic Moduli of Composite 

Materials 
• Effects of Thermal Spiking on Graphite-Epoxy Composites 
• Environmental Effects on Glass Fiber Reinforced Polyester 

and Vinyl-ester Composites 
• Degradation of Tensile and Shear Properties of Composites 

Exposed to Fire or High Temperature 
• Electrical Hazards Posed by Graphite Fibers 
• Numerical Procedures for the Solution of One Dimensional 

Fickian Diffusion Problems 

The style requirements of the journal have ensured a consistency 
of presentation. Each chapter contains an abstract, introduction, 
conclusion, and a generally systematic presentation with ap- 
propriate references. The book contains a modest index. The ar- 
ticles span a period from about 1968 to 1980. 

As is evident from the topic list above, the most common "envi- 
ronment" considered by the articles in the book consists of temper- 
ature and moisture variations. The "effects" discussed include 
moisture absorption profiles (as a function of time and tempera- 
ture); degradation of strength and elastic modulus caused by 
moisture and temperature increases under tensile and compressive 
loading; changes in strength and modulus (including shear 
strength and modulus) as a result of exposure to liquids such as 
saturated salt water, No. 2 diesel fuel, lubricating oil, antifreeze, 
and indolene; mass loss and changes in tensile and shear strength 
and stiffness as a result of exposure to fire; and the arcing voltage 
of graphite fibers settling on electrical conductors following their 
release from burned and unburned graphite~expoxy coupons. 

The book's strongest feature is the experimental data presented 
in graphical and tabular form and the summaries of experimental 

data from other authors presented in tabular form. Hundreds of 
graphical characterizations of behavior for a wide range of materi- 
als and circumstances provide a valuable reference and a good 
basis for generalization of behavior. Chapter 10 alone has some 
210 data plots. While the analysis presented is significant and the 
numerical codes listed are certainly of value to the user, it is much 
easier to find alternate analytical presentations than it is to find 
other sources of experimental data. 

The analytical developments are based on Fickian diffusion con- 
cepts which do not allow for a variety of anomalous effects caused 
by such things as matrix cracking, voids, and so on. The treat- 
ments are essentially one-dimensional and can handle transient 
boundary conditions. A numerical analysis code is listed in 
Chapter 13 for the solution of such problems. 

This book is a useful presentation of valuable information. The 
principal fault of the book is that  articles tend to be presentations 
or expositions and not explanations in the textbook sense. How- 
ever, some explanations can be found, and the extensive array of 
material property and behavior characterizations for an important 
set of environmental circumstances makes this collection of articles 
worthwhile for the engineer or scientist who has an interest in this 
area. 

Developing Methods to Reduce Scatter of the 
Strength Properties of Advanced Composite 
Materlals 

Reviewed by If. L. Reifsnider, Virginia Polytechnic Institute and 
State University, Blacksburg, VA, coeditor of  the Review. 

REFERENCE: Brown, G. G., "Developing Methods to Reduce Scatter 
of the Strength Properties of Advanced Composite Materials," General 
Dynamics Report NADC-78078-60, Feb. 1980. 

This report describes work aimed at fabricating composite lami- 
nates by methods that reduce the scatter of strength data, thereby 
effecting increases in the "A"  and "B"  design allowables for 
strength. The study was well organized, consisting of a first phase 
to develop baseline data, a second phase to develop fabrication 
schemes, and a third phase to compare data from laminates made 
using these techniques with the baseline data. Tensile, com- 
pressive, and rail shear data for unidirectional, ±45 ,  and [+452, 
08, T- 452] laminates were used for comparisons. The methods were 
defined as "opt imum" on the basis of the compressive strength of 

unidirectional specimens. Plate specimens and specimens with 
center holes were tested. 

Several prefabrication techniques were studied. In the first, 
called "stretch staging," the prepreg was loaded with a static load 

while stretched over a 1.2-m (4-ft) drum, then placed in an air cir- 
culating oven for staging (typically at 93°C [200°F] for up to 30 
min). Flat laminates of the [--+452, 08, T 452] type were then 
fabricated and tested. All compressive strengths were at least 10% 
above the average of the baseline data. The optimum stretch stag- 
ing for the AS-3S01-6 graphite/epoxy system used was 93°C 
(200°F) for 20 rain with a weight of 302 N (68 lb) on the 150-ram 
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(6-in.) prepreg tape, which reduced the coefficient of variation 
significantly and increased strength modestly. 

Another modification tested was to add chopped AS graphite 
fiber to the surface of each ply of the prepreg (about 15% by 
volume) to increase inter-ply strength. This addition degraded the 
transverse tensile strength of 0 ° unidirectional specimens and 
degraded the compressive strength of [ + 452, 0 8, T 452] laminates; 
however, adding 104 glass scrim cloth to the prepreg surfaces 
(from Hercules Corp.) in the laminates increased the transverse 
tensile strength and compressive strengths while reducing their co- 
efficients of variation significantly. 

The final method tested was "prestressing" by passing the pre- 
preg over sets of small diameter rollers at cryogenic temperatures 
to fracture weak sites within the graphite filaments. Optimum con- 
ditions appeared to be --33.3°C (--25°F) with 9.4-mm (0.375-in.) 
diameter rollers. 

Laminates made using the optimum techniques were then 
tested. Figures 1 and 2 show some of the positive results obtained. 
Figure 1 shows the largest effects, found in the +45 ° laminate. 

Figure 2 shows data for the 0 ° unidirectional laminates. For the 
three successful modifications tested, increases in transverse and 
compressive strength were more substantial than the reductions in 
scatter. Because of their cost, these additional methods (as the 
authors note) will probably be used only when a special need for 
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FIG. 2ITensile load at failure (lb X 103). 0 ° baseline and optimum 
modified lamhzates. [Figure 21 of Brown: SI  scale markers added.) 

improved performance can justify the extra expenses. However, 
the work seems to verify some basic ideas about the effect of some 
mechanical processing variables on quasi-static properties and 
presents some useful and interesting data. 

Analysis of Layered Composite Plates Accounting 
for Large Deflections and Transverse Shear 
Strains 

Rev&wed by K. L. Reifsnider, Virginia Polytechnic Ins t i tu te  and  
State University, Blacksburg, VA, coeditor o f  the Review. 

REFERENCE: Reddy, J. N., "Analysis of Layered Plates Accounting 
for Large Deflections and Transverse Shear Strains," Virginia 
Polytechnic Institute College of Engineering Report VPI-E-81-12, 
April 1981. 

Reddy's motivation for undertaking this study is the significant 
influence of transverse shear deformations on the quasi-static and 
dynamic response of thick composite plates. In his words, "The 
classical thin-plate theory (CPT) assumes that normals to the mid- 
surface before deformation remain straight and normal to the mid- 
surface after deformation, implying that thickness shear deforma- 
tion effects are negligible. As a result, the natural frequencies, for 
example, calculated using the thin-plate theory are higher than 
those obtained by including the transverse shear deformation ef- 
fects. Also, the transverse deflections predicted by the thin-plate 
theory are lower than those predicted by a shear deformable theory 
(SDT). Due to the low transverse shear modulus relative to the in- 
plane Young's moduli, the transverse shear deformation effects are 
even more pronounced in the composite plates. Thus a reliable 
prediction of the small deflection response characteristics of high 
modulus composite plates requires the use of shear deformable 
theories." 

Furthermore, large deflections require additional rigor, primar- 
ily the inclusion of nonlinear terms in the equations of motion to 
account for midplane stretching caused by the interaction between 
membrane stresses and bending and shear plate curvatures. 

This paper presents an excellent review of recent developments 
in the finite-element analysis of layered composite plates: the work 
of 100 authors is discussed, in all of which the effects of shear 
deformations and rotary inertia were not considered. 

The paper presents a shear deformation theory that admits 
large, von Karmon-type rotations. The approach is based on the 
Yang-Norris-Stavsky (YNS) generalization of Reissner-Mindlin 
plate theory for homogeneous isotropic plates to arbitrary lami- 
nated anisotropic plates. To account for the midplane stretching 
caused by large deflections, the shear deformable theory of Whit- 
ney and Pagano [1] is modified to include large rotations. 

The displacement field is assumed to be of the form 

u l ( x , y ,  z. t)  ---- u ( x , y ,  t )  + z  ~'x(X,y, t)  

u2(x. y, z, t)  = v(x, y, t)  + z ~y(X, y, t)  (1) 

u3(x, y, z. t)  = w(x,  y, t)  

Here t is the time; u 1, u2, and u3 are the displacements in x, y, and 
z directions, respectively; u, v. and w are the associated midplane 
displacements; and ~b x and ~by are the slopes in thexz andyz planes 



caused by bending only. Assuming that the plate is moderately 
thick and strains are much smaller than rotations, the nonlinear 
strain-displacement relations are expressed in the form, 

3u l ( O w ~ 2 + z O ~ X  
= - -  _ ~ r~lO + ZK I 

el 3x + 2 \ Ox / Ox 

Ov 1 ( O w ~ 2 + z a f y  
62 = Oy + 2 \ Oy / Oy =- e20 + z~2 (2) 

_ov (°2 e 6 =  V + Ox + Ox Oy + z _ _  + ax,] =- e60 -1- ZK6 

Ow Ow 
05=¢x+W 04 = ~ + ~ y  

wherein the products of fix, @, OUl/OX, and Ou2/Oy are neglected. 
The author neglects body moments and surface shearing forces to 
write the equations of motion as 

Nl,x + N6,y = Putt + Rfx. t t  

N6,x + N2,y = P 'g t t  -{- Rfy,  tt 

Ol,x + 02,y + N(Niw) = Pwtt (3) 

Ml,x  + M6,y -- Qt = ICx, tt + Rutt 

M6,x + M2,y -- Q2 = I~by.tt + Rvtt 

Here P, R, and I are the normal, coupled normal-rotary, and 
rotary inertia coefficients; N i, Qi, and M i are the stress and mo- 
ment resultants; and N( ) is the nonlinear operator 

O N I ~ x  ~ y \  O x /  N(w'Ni) = N(w'Ni) = -~x + 

+ q  0 (N6OW  0 I / OW'  
ox \ oy / + 7 ;  7 ;  ) 

(4) 

The plate constitutive equations used are 

i /l rA/, 1 
Mi L Bii Dii ~,i 

(s) 

i021=  A44 m4] I41 
QI L A45 A55 e5 

based on plane stress assumptions. For the variational problem, 
the boundary conditions used are 

essential." specify, u., u s, w, ¢., Cs 

natural: specify, N n, N.s, q, M. ,  Mns 
(6) 

Reddy notes that these equations do not admit exact solutions. In- 
stead, he presents a finite-element model based on an extension of 
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the penalty plate-bending element he developed for the linear anal- 
ysis of layered composite plates [2]. He states the weak form of Eq 
3 over a typical element as 

0 = i [6u(Putt + Rfx.tt) + ~uxN1 + ~Uy N6 + ~v(Pvtt + R~y, tt) 
d R e 

+ 6vxN 6 + 6vyN 2 + 6w(Pwtt) + 6wxQ1 + 6WyQ2 

06w Ow 06w Ow 
+ - - - - N  1 + - - - - N  6 

Ox Ox 03, Ox 

06w Ow 06w Ow 
+ - -  - -  N6 + - -  - -  N2 (7) 

O x O y  O y O y  

+ 6~x(I~x,n + R u t t )  + 6~x.xM1 + 6¢x.yM6 + 6¢xOl 

-]- (3¢y(I~by, tt + evtt)  + ~y ,  xM6 + ~¢y.yM2 + ~¢yQ2] dxdy 

+ I ( r u n N " + f u s N n s ) d s + ~  l 
Cn Cq bwqds 

o 

+ j ~c (rfnMn + 6¢sMns)ds 
m 

where N n, Nns, q, and M n are plate boundary values (interior 
values cancel). 

The author approximates u, v, w, and Cx over each element by 

u : U'r(t), v = Vr(t), w : Wk(t), (8) 
Cx = x~,(t), Cy = Y~(t) 

where U, V, and so on are given by 

It 

u = E U; ¢i (9) 
i 

where U i is the value of U at node i; t~ i is the finite-element inter- 
polation function at node i; n is the number of nodes in the ele- 
ment; and z(t), k(t), and/~(t) are t ime-dependent functions whose 
specific form is to be determined. Substituting Eqs 8 and 9 into Eq 
7, he obtains the following element equation: 

[ K ] { A }  + [ M I { A }  = { F }  (lo) 

Here {A } is the column Vector of the nodal values of the general- 
ized displacements, [K] is the matrix of stiffness coefficients 
(which depends on the generalized displacements), [M] is the 
matrix of mass coefficients, and {F} is the column vector contain- 
ing the boundary contributions. Reddy notes that the time func- 
tions are not harmonic; that is, strictly speaking, Eq 10 must be 
solved as a transient equation (even in the case of free vibrations). 
However, in the present analysis he assumes, for simplicity, that 

= ~ = k 2 : cos2 wt (11) 

and retains only the first term of the cosine series. This assumption 
yields the standard eigenvalue problem in the case of natural vibra- 

tion: 

[(K) - -  ~ 2 ( M ) ] { A }  = { 0 }  (12) 
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The solution procedure consists of a direct iteration, in which 
the global stiffness [K] is updated with the global displacement 
(eigenfunction) vector { A } from the previous iteration. { A } is set to 
zero at the beginning of the iteration procedure to obtain the linear 
solution (frequencies) of the problem at the end of the first itera- 
tion. The iteration is terminated when the nonlinear solution (fre- 
quencies) obtained during two consecutive iterations differ by 
some small number  (say, 1%). 

Reddy notes that the shear energy terms in the element matrices 
must be under integrated (a 1 by 1 Gauss rule used instead of a 2 
by 2 rule for a four-node element; for example) to avoid "locking" 
(excessively stiff elements), a problem made especially severe by 
the large difference between the material's in-plane stiffness and 
shear stiffness. 

To establish the effect of reduced integration and to illustrate 
the accuracy of the finite-element scheme, Reddy considers the 
quasi-static bending of several composite plates, using linear 
analysis, compared to results from the literature. The agreement is 
excellent. He also considers the nonlinear bending of isotropic and 
composite square plates under uniform loading and compares the 
stresses and deflections with other results from the literature. 
Numerical experiments were conducted to investigate the effect of 
element type and mesh on the results. The agreement with litera- 
ture values is good, with some differences in edge stress values for 
certain cases. It is shown that shear deformation has a significant 
effect on the deflections of the thick plates considered. Extensive 
results and comparisons are presented. 

Free vibrations of isotropic, orthotropic, and layered composite 
plates are then considered. Linear and nonlinear fundamental  fre- 
quencies obtained by Reddy are compared with those available in 
the literature. Two example results follow. 

Figure 3 shows the effect of orthotropy (E~/E2 for fixed G12/E 2 
= 0.3846, u12 = 0.3) on the linear fundamental  frequencies k L 
and on the ratio of linear to nonlinear frequencies, ? = wL/WNL, of 
single-layer and two-layer cross-ply and angle-ply square plates 
with in-plane-to-thickness ratio b/n  = 10. 
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FIG. 3--Effect of orthotropy (GI2/E 2 = 0.3846, ~12 = 0.3) on the 
linear nondimensionalized fundamental frequency X and on the ratio (3~ = 
~0L/~YL) of linear to nonlinear fundamental frequencies of square plates 
(b/h = 10). (Figure 15 t~ Reddy; slightly modified. ) 
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While the linear frequencies increase, the ratio of linear to non- 
linear frequencies decreases with increasing E I / E  2. Although the 
linear fundamental  frequency of the angle-ply plate is larger than 
that of the cross-ply plate, the ratio WL/~0NL is smaller for the 
angle-ply plate than for the cross-ply plate, indicating that the 
nonlinearity is more pronounced in the angle-ply plate than in the 
cross-ply plate. 

Figure 4 shows the plot of frequency ratio versus the amplitude- 
to-thickness ratio for various boundary conditions and side-to- 
thickness ratio of isotropic (v = 0.3) square plates. Since the plate 
stiffness is proportional to the plate thickness and increases with 
edge constraints, the nonlinear frequencies are greater for thick 
plates than for thin plates. 

Extensive additional results are presented, including the effects 
of boundary conditions on the variations identified. 

Among other things, Reddy concludes that the four-node and 
nine-node isoparametric elements he uses (with reduced integra- 
tion for shear energy terms) give accurate results while having the 
advantage of simplicity compared.to the usual plate elements. 

This report is a valuable addition to the literature (primarily the 
global aspects of response as noted by Reddy), especially in the 
context of the author's observation that "developments in compu- 
tational mechanics related to finite-element analysis of plates and 
shells in the next decade will be largely concerned with the develop- 
ment of computationally simple elements that are capable of repre- 
senting accurately physical features of the phenomena involved." 
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