Geotechnical Testing Journal Subject Index Volume 20, 1997

A

Adsorption

Determination of ionic strength and equilibrium concentrations of heavy metals by the electrical conductivity method (Kayyal, MK and Mohamed, AMO), March, 3

Angle of wall friction

Friction angle between expanded shale aggregate and construction materials (Valsangkar, AJ and Holm, TA), June, 252

Annnular seals

Ultrasonic method for evaluation of annular seals for wells and instrument holes (Yesiller, N, Edil, TB, and Benson, CH), March, 17

Attapulgite

Compaction of sand-processed clay soil mixtures (Howell, JL, Shackelford, CD, Amer, NH, and Stern, RT), Dec., 443

Attenuation

Low strain measurements using random noise excitation (Cascante, G and Santamarina, C), March, 29

Atterberg Limits

Compaction of sand-processed clay soil mixtures (Howell, JL, Shackelford, CD, Amer, NH, and Stern, RT), Dec., 443

Automation

Upgrading equipment and procedures for stress path triaxial testing of coarsegrained materials (Flora, A and Modoni, G), Dec., 459

B

Bentonite

Compaction of sand-processed clay soil mixtures (Howell, JL, Shackelford, CD, Amer, NH, and Stern, RT), Dec., 443

Comparison of laboratory-measured GCL hydraulic conductivity based on three permeameter types (Petrov, RJ, Rowe, RK, and Quigley, RM), March, 49

© 1997 by the American Society for Testing and Materials

Design and evaluation of a large direct shear machine for geosynthetic clay liners (Fox, PJ, Rowland, MG, Scheithe, JR, Davis, KL, Supple, MR, and Crow, CC), Sept., 279

Bentonite-sand mixture

Integrated shear and flow parameter measurement (Zhang, M, Esaki, T, Olsen, HW, and Mitani, Y), Sept., 296

Bifurcation

Use of digital image processing in monitoring shear band development (Liang, L, Saada, A, Figueroa, JL, and Cope, CT), Sept., 324

Bladder accumulator

Flow pump system for assessing clay barrier-permeant compatibility (Kashir, M and Yanful, EK), June, 179

Book review

Fraacture Mechanics of Concrete: Applications of Fracture Mechanics to Concrete, Rock, and Other Quasi-Brittle Materials by Shah et al. (Fourney, WL), March, 129

Boreholes

Ultrasonic method for evaluation of annular seals for wells and instrument holes (Yesiller, N, Edil, TB, and Benson, CH), March, 17

Buoyancy

Grain-size analysis by buoyancy method (Bardet, J-P and Young, J), Dec., 481

С

Capacitance

Measurement of moisture content with a penetrometer (Singh, G, Das, BM, and Chong, MK), Sept., 317

Centrifuges

Centrifuge-modeled rigid structure to investigate dynamic soil-structure interacation (Andersen, GR, Todorovski, L, Likos, W, and Whitman, RV), June, 139 Laboratory investigation of nonuniformly reinforced soil-retaining structures (Porbaha, A and Goodings, DJ), Sept., 289

Testing of reinforced slopes in a geotechnical centrifuge (Zornberg, JG, Mitchell, JK, and Sitar, N), Dec., 470

Clays

Closure (Sridharan, A, Prakash, K, and Asha, SR), March, 128

Discussion on "consolidation behavior of soils" by A. Sridharan, K. Prakash, and S. R. Asha (Tewatia, SK and Venkatachalam, K), March, 126

Improved \sqrt{t} method to evaluate consolidation test results (Tewatia, SK and Venkatachalam, K), March, 121

Rapid density profiling of consolidating clay using synchrotron radiation (Charlie, WA, Durnford, D, and Steenhuis, TS), Sept., 340

Seismic flat dilatometer tests in Connecticut Valley varved clay (Martin, GK and Mayne, PW), Sept., 357

Coarse aggregate

Friction angle between expanded shale aggregate and construction materials (Valsangkar, AJ and Holm, TA), June, 252

Coarse-grained materials

Upgrading equipment and procedures for stress path triaxial testing of coarsegrained materials (Flora, A and Modoni, G), Dec., 459

Coefficient of consolidation

Closure (Sridharan, A, Prakash, K, and Asha, SR), March, 128

Discussion on "consolidation behavior of soils" by A. Sridharan, K. Prakash, and S. R. Asha (Tewatia, SK and Venkatachalam, K), March, 126

Improved \sqrt{t} method to evaluate consolidation test results (Tewatia, SK and Venkatachalam, K), March, 121

Cohesive soils

Dynamic characteristics of Old Bay clay (Guha, S, Drnevich, VP, and Bray, JD), Dec., 383 Laboratory investigation of nonuniformly reinforced soil-retaining structures (Porbaha, A and Goodings, DJ), Sept., 289

Collapsible soils

Pressuremeter testing in arid collapsible soils (Smith, TD and Rollins, KM), March, 12

Compaction

Compaction of sand-processed clay soil mixtures (Howell, JL, Shackelford, CD, Amer, NH, and Stern, RT), Dec., 443

Compression tests

Equipment for one-dimensional compression and triaxial testing of unsaturated granular soils at low stress levels (Anderson, WF, Goodwin, AK, Pyrah, IC, and Salman, TH), March, 74

Laboratory studies on the volume change characteristics of kaolinite contaminated with sodium phosphate/sulfate (Rao, SM and Reddy, PMR), Sept., 362

Computer vision

Grain-size distribution of granular soils by computer vision (Raschke, SA and Hryciw, RD), Dec., 433

Concrete

Friction angle between expanded shale aggregate and construction materials (Valsangkar, AJ and Holm, TA), June, 252

Conductivity

Methods for broad-band dielectric permittivity measurements (soil-water mixtures, 5 Hz to 1.3 GHz) (Klein, K and Santamarina, JC), June, 168

Consolidation

Closure (Sridharan, A, Prakash, K, and Asha, SR), March, 128

Discussion on "consolidation behavior of soils" by A. Sridharan, K. Prakash, and S. R. Asha (Tewatia, SK and Venkatachalam, K), March, 126

Improved \sqrt{t} method to evaluate consolidation test results (Tewatia, SK and Venkatachalam, K), March, 121

Rapid density profiling of consolidating clay using synchrotron radiation (Charlie, WA, Durnford, D, and Steenhuis, TS), Sept., 340

Soil fabric changes during consolidation (Adamcewicz, AS, Muhunthan, B, and Masad, E), Sept., 347

Creep testing

Development of an accelerated creep testing procedure for geosynthetics--Part I: Testing (Farrag, K and Shirazi, H), Dec., 414

Crumb tests

Comparative study on physical tests of dispersibility of soils used for earthfill dams in Turkey (Tosun, H), June, 242 D

Deflection

Determining a pavement modulus from portable FWD testing (Livneh, M, Livneh, NA, and Elhadad, E), Dec., 373

Density

Rapid density profiling of consolidating clay using synchrotron radiation (Charlie, WA, Durnford, D, and Steenhuis, TS), Sept., 340

Desorption

Determination of ionic strength and equilibrium concentrations of heavy etals by the electrical conductivity method (Kayyal, MK and Mohamed, MO), March, 3

Dielectrics

Methods for broad-band dielectric permittivity measurements (soil-water mixtures, 5 Hz to 1.3 GHz) (Klein, K and Santamarina, JC), June, 168

Digital imaging

Measurement of volume changes in triaxial tests using digital imaging techniques (Macari, EJ, Parker, JK, and Costes, NC), March, 103

Dilation

Constant p' and constant volume friction angles are different (Kutter, BL and Chen, Y-R), Sept., 304

Direct shear

Design and evaluation of a large direct shear machine for geosynthetic clay liners (Fox, PJ, Rowland, MG, Scheithe, JR, Davis, KL, Supple, MR, and Crow, CC), Sept., 279

Dispersive soil

Comparative study on physical tests of dispersibility of soils used for earthfill dams in Turkey (Tosun, H), June, 242

Downhole test

Seismic flat dilatometer tests in Connecticut Valley varved clay (Martin, GK and Mayne, PW), Sept., 357

Dry soils

Automatic volume measuring device for testing dry soils: "Martina" (Fioravante, V and Capoferri, R), Dec., 423

Dynamic properties

Dynamic characteristics of Old Bay clay (Guha, S, Drnevich, VP, and Bray, JD), Dec., 383

Dynamic soil-structure interaction

Centrifuge-modeled rigid structure to investigate dynamic soil-structure interacation (Andersen, GR, Todorovski, L, Likos, W, and Whitman, RV), June, 139 E

Earthfill dams

Comparative study on physical tests of dispersibility of soils used for earthfill dams in Turkey (Tosun, H), June, 242

Electrokinetics

Design, fabrication, and assembly of an apparatus for electrokinetic remediation studies (Yeung, AT, Scott, TB, Gopinath, S, Menon, RM, and Hsu, C-n), June, 199

Excavation

Experimental nailed soil walls (Raju, GVR, Wong, IH, and Low, BK), March, 90

Exchangeable cations

Determination of ionic strength and equilibrium concentrations of heavy metals by the electrical conductivity method (Kayyal, MK and Mohamed, AMO), March, 3

Experimental apparatus

Design, fabrication, and assembly of an apparatus for electrokinetic remediation studies (Yeung, AT, Scott, TB, Gopinath, S, Menon, RM, and Hsu, C-n), June, 199

F

Fabric

Soil fabric changes during consolidation (Adamcewicz, AS, Muhunthan, B, and Masad, E), Sept., 347

Falling weight deflectometer

Determining a pavement modulus from portable FWD testing (Livneh, M, Livneh, NA, and Elhadad, E), Dec., 373

Filters

Effect of in-plane tensile loads on the retention characteristics of geotextiles (Fourie, AB and Addis, P), June, 211

Filtration

Filtration of fly ash using nonwoven geotextiles: effect of sample preparation technique and testing method (Akram, MH and Gabr, MA), Sept., 265

Fines content

Effects of fines on monotonic undrained shear strength of sandy soils (Thevanayagam, S, Ravishankar, K, and Mohan, S), Dec., 394

Flat dilatometer

Seismic flat dilatometer tests in Connecticut Valley varved clay (Martin, GK and Mayne, PW), Sept., 357

Flow pump

Flow pump system for assessing clay barrier-permeant compatibility (Kashir, M and Yanful, EK), June, 179 Integrated shear and flow parameter measurement (Zhang, M, Esaki, T, Olsen, HW, and Mitani, Y), Sept., 296

Fly ash

Filtration of fly ash using nonwoven geotextiles: effect of sample preparation technique and testing method (Akram, MH and Gabr, MA), Sept., 265

Foundation design

Pressuremeter testing in arid collapsible soils (Smith, TD and Rollins, KM), March, 12

Fracture

Influence of intersection angle at singlewell flow tests in fracture-wellbore systems (Aydin, A), March, 110

Friction

Circular arc test for soil-geosynthetic interface strength (Ghiassian, H, Hryciw, RD, and Gray, DH), Dec., 407

Constant p' and constant volume friction angles are different (Kutter, BL and Chen, Y-R), Sept., 304

G

Geogrid

Development of an accelerated creep testing procedure for geosynthetics--Part I: Testing (Farrag, K and Shirazi, H), Dec., 414

Geophysics

Seismic flat dilatometer tests in Connecticut Valley varved clay (Martin, GK and Mayne, PW), Sept., 357

Geosynthetic clay liners (GCL)

Comparison of laboratory-measured GCL hydraulic conductivity based on three permeameter types (Petrov, RJ, Rowe, RK, and Quigley, RM), March, 49

Design and evaluation of a large direct shear machine for geosynthetic clay liners (Fox, PJ, Rowland, MG, Scheithe, JR, Davis, KL, Supple, MR, and Crow, CC), Sept., 279

Geosynthetics

Testing of reinforced slopes in a geotechnical centrifuge (Zornberg, JG, Mitchell, JK, and Sitar, N), Dec., 470

Geotextiles

Testing of reinforced slopes in a geotechnical centrifuge (Zornberg, G, Mitchell, JK, and Sitar, N), Dec., 470

Gradient ratio

Filtration of fly ash using nonwoven geotextiles: effect of sample preparation technique and testing method (Akram, MH and Gabr, MA), Sept., 265

Grain size distribution

Grain-size analysis by buoyancy method (Bardet, J-P and Young, J), Dec., 481

Grain-size distribution of granular soils by computer vision (Raschke, SA and Hryciw, RD), Dec., 433

Granular materials

Calibration and use of grid-based tactile pressure sensors in granular material (Paikowsky, SG and Hajduk, EL), June, 218

Membrane penetration in granular materials at high pressures (Bopp, PA and Lade, PV), Sept., 272

H

Head loss

Influence of intersection angle at singlewell flow tests in fracture-wellbore systems (Aydin, A), March, 110

Heavy metals

Determination of ionic strength and equilibrium concentrations of heavy metals by the electrical conductivity method (Kayyal, MK and Mohamed, AMO), March, 3

High pressure

Membrane penetration in granular materials at high pressures (Bopp, PA and Lade, PV), Sept., 272

Hydraulic conductivity

Closure (Sridharan, A, Prakash, K, and Asha, SR), March, 128

Comparison of laboratory-measured GCL hydraulic conductivity based on three permeameter types (Petrov, RJ, Rowe, RK, and Quigley, RM), March, 49

Discussion on "consolidation behavior of soils" by A. Sridharan, K. Prakash, and S. R. Asha (Tewatia, SK and Venkatachalam, K), March, 126

Flow pump system for assessing clay barrier-permeant compatibility (Kashir, M and Yanful, EK), June, 179

Improved \sqrt{t} method to evaluate consolidation test results (Tewatia, SK and Venkatachalam, K), March, 121

Hydrodynamic sieving technique

Effect of in-plane tensile loads on the retention characteristics of geotextiles (Fourie, AB and Addis, P), June, 211

I

Image analysis

Grain-size distribution of granular soils by computer vision (Raschke, SA and Hryciw, RD), Dec., 433 Use of digital image processing in monitoring shear band development (Liang, L, Saada, A, Figueroa, JL, and Cope, CT), Sept., 324

In-situ tests

Design and performance of a portable piezocone driver for high resolution profiling of wetland sediments (Zeeb, PJ, Hemond, HF, and Germaine, JT), June, 191

Measurement of moisture content with a penetrometer (Singh, G, Das, BM, and Chong, MK), Sept., 317

Pressuremeter testing in arid collapsible soils (Smith, TD and Rollins, KM), March, 12

Index properties

Dynamic characteristics of Old Bay clay (Guha, S, Drnevich, VP, and Bray, JD), Dec., 383

Inorganic contaminants

Laboratory studies on the volume change characteristics of kaolinite contaminated with sodium phosphate/sulfate (Rao, SM and Reddy, PMR), Sept., 362

Interface

Circular arc test for soil-geosynthetic interface strength (Ghiassian, H, Hryciw, RD, and Gray, DH), Dec., 407

Intersection

Influence of intersection angle at singlewell flow tests in fracture-wellbore systems (Aydin, A), March, 110

Isotropic compression

Membrane penetration in granular materials at high pressures (Bopp, PA and Lade, PV), Sept., 272

L

Laboratory equipment

Automatic volume measuring device for testing dry soils: "Martina" (Fioravante, V and Capoferri, R), Dec., 423

Equipment for one-dimensional compression and triaxial testing of unsaturated granular soils at low stress levels (Anderson, WF, Goodwin, AK, Pyrah, IC, and Salman, TH), March, 74

Upgrading equipment and procedures for stress path triaxial testing of coarsegrained materials (Flora, A and Modoni, G), Dec., 459

Laboratory testing

Calibration and use of grid-based tactile pressure sensors in granular material (Paikowsky, SG and Hajduk, EL), June, 218

Laser light scattering

Particle-size analysis of soils using laser light scattering and X-ray absorption technology (Vitton, SJ and Sadler, LY), March, 63

Local deformation transducers

Performance evaluation of LDTs for use in triaxial tests (Hoque, E, Sato, T, and Tatsuoka, F), June, 149

M-N

Manufacture

Performance evaluation of LDTs for use in triaxial tests (Hoque, E, Sato, T, and Tatsuoka, F), June, 149

Matric suction sensor

Determination of shear strength parameters of unsaturated silts and sands based on the water retention curve (Öberg, A-L and Sällfors, G), March, 40

Mechanical waves

Low strain measurements using random noise excitation (Cascante, G and Santamarina, C), March, 29

Membrane penetration

Membrane penetration in granular materials at high pressures (Bopp, PA and Lade, PV), Sept., 272

Microscopy

Soil fabric changes during consolidation (Adamcewicz, AS, Muhunthan, B, and Masad, E), Sept., 347

Model tests

Experimental nailed soil walls (Raju, GVR, Wong, IH, and Low, BK), March, 90

Modeling

Influence of intersection angle at single-well flow tests in fracture-wellbore systems (Aydin, A), March, 110

Laboratory investigation of nonuniformly reinforced soil-retaining structures (Porbaha, A and Goodings, DJ), Sept., 289

Moisture content

Measurement of moisture content with a penetrometer (Singh, G, Das, BM, and Chong, MK), Sept., 317

Nondestructive testing

Determining a pavement modulus from portable FWD testing (Livneh, M, Livneh, NA, and Elhadad, E), Dec., 373

Р

Particle size analysis

Grain-size analysis by buoyancy method (Bardet, J-P and Young, J), Dec., 481

Particle-size analysis of soils using laser light scattering and X-ray absorp-

tion technology (Vitton, SJ and Sadler, LY), March, 63

Penetrometers

Design and performance of a portable piezocone driver for high resolution profiling of wetland sediments (Zeeb, PJ, Hemond, HF, and Germaine, JT), June, 191

Measurement of moisture content with a penetrometer (Singh, G, Das, BM, and Chong, MK), Sept., 317

Permeability

Filtration of fly ash using nonwoven geotextiles: effect of sample preparation technique and testing method (Akram, MH and Gabr, MA), Sept., 265

Integrated shear and flow parameter measurement (Zhang, M, Esaki, T, Olsen, HW, and Mitani, Y), Sept., 296

Permeameters

Comparison of laboratory-measured GCL hydraulic conductivity based on three permeameter types (Petrov, RJ, Rowe, RK, and Quigley, RM), March, 49

Permittivity

Methods for broad-band dielectric permittivity measurements (soil-water mixtures, 5 Hz to 1.3 GHz) (Klein, K and Santamarina, JC), June, 168

Piezocones

Design and performance of a portable piezocone driver for high resolution profiling of wetland sediments (Zeeb, PJ, Hemond, HF, and Germaine, JT), June, 191

Pore pressure

Rapid density profiling of consolidating clay using synchrotron radiation (Charlie, WA, Durnford, D, and Steenhuis, TS), Sept., 340

Pressure sensors

Calibration and use of grid-based tactile pressure sensors in granular material (Paikowsky, SG and Hajduk, EL), June, 218

Pressuremeters

Pressuremeter testing in arid collapsible soils (Smith, TD and Rollins, KM), March, 12

R

Relative density

Effects of fines on monotonic undrained shear strength of sandy soils (Thevanayagam, S, Ravishankar, K, and Mohan, S), Dec., 394

Residual strength

Effects of fines on monotonic undrained shear strength of sandy soils (Thevanaya-

gam, S, Ravishankar, K, and Mohan, S), Dec., 394

Resistivity

Methods for broad-band dielectric permittivity measurements (soil-water mixtures, 5 Hz to 1.3 GHz) (Klein, K and Santamarina, JC), June, 168

Resonant column tests

Low strain measurements using random noise excitation (Cascante, G and Santamarina, C), March, 29

Retaining structure

Laboratory investigation of nonuniformly reinforced soil-retaining structures (Porbaha, A and Goodings, DJ), Sept., 289

Retaining walls

Centrifuge-modeled rigid structure to investigate dynamic soil-structure interacation (Andersen, GR, Todorovski, L, Likos, W, and Whitman, RV), June, 139

Experimental nailed soil walls (Raju, GVR, Wong, IH, and Low, BK), March, 90

S

Sands

Circular arc test for soil-geosynthetic interface strength (Ghiassian,H, Hryciw, RD, and Gray, DH), Dec., 407

Constant p' and constant volume friction angles are different (Kutter, BL and Chen, Y-R), Sept., 304

Use of digital image processing in monitoring shear band development (Liang, L, Saada, A, Figueroa, JL, and Cope, CT), Sept., 324

Sedimentation analysis

Grain-size analysis by buoyancy method (Bardet, J-P and Young, J), Dec., 481

Seismic interaction forces

Centrifuge-modeled rigid structure to investigate dynamic soil-structure interacation (Andersen, GR, Todorovski, L, Likos, W, and Whitman, RV), June, 139

Shear banding

Use of digital image processing in monitoring shear band development (Liang, L, Saada, A, Figueroa, JL, and Cope, CT), Sept., 324

Shear modulus

Dynamic characteristics of Old Bay clay (Guha, S, Drnevich, VP, and Bray, JD), Dec., 383

Shear strain

Integrated shear and flow parameter measurement (Zhang, M, Esaki, T, Olsen, HW, and Mitani, Y), Sept., 296

Shear strength

Circular arc test for soil-geosynthetic interface strength (Ghiassian, H, Hryciw, RD, and Gray, DH), Dec., 407

Design and evaluation of a large direct shear machine for geosynthetic clay liners (Fox, PJ, Rowland, MG, Scheithe, JR, Davis, KL, Supple, MR, and Crow, CC), Sept., 279

Determination of shear strength parameters of unsaturated silts and sands based on the water retention curve (Öberg, A-L and Sällfors, G), March, 40

Sieve analysis

Grain-size distribution of granular soils by computer vision (Raschke, SA and Hryciw, RD), Dec., 433

Silica sand

Automatic volume measuring device for testing dry soils: "Martina" (Fioravante, V and Capoferri, R), Dec., 423

Small strains

Performance evaluation of LDTs for use in triaxial tests (Hoque, E, Sato, T, and Tatsuoka, F), June, 149

Soil nailing

Experimental nailed soil walls (Raju, GVR, Wong, IH, and Low, BK), March, 90

Soil reinforcement

Testing of reinforced slopes in a geotechnical centrifuge (Zornberg, JG, Mitchell, JK, and Sitar, N), Dec., 470

Soil remediation

Design, fabrication, and assembly of an apparatus for electrokinetic remediation studies (Yeung, AT, Scott, TB, Gopinath, S, Menon, RM, and Hsu, C-n), June, 199

Soil tests

Calibration and use of grid-based tactile pressure sensors in granular material (Paikowsky, SG and Hajduk, EL), June, 218

Steady state strength

Effects of fines on monotonic undrained shear strength of sandy soils (Thevanayagam, S, Ravishankar, K, and Mohan, S), Dec., 394

Stereology

Soil fabric changes during consolidation (Adamcewicz, AS, Muhunthan, B, and Masad, E), Sept., 347

Swell potential

Laboratory studies on the volume change characteristics of kaolinite contaminated with sodium phosphate/sulfate (Rao, SM and Reddy, PMR), Sept., 362

Syringe

Flow pump system for assessing clay barrier-permeant compatibility (Kashir, M and Yanful, EK), June, 179

Т

Temperature

Development of an accelerated creep testing procedure for geosynthetics--Part I: Testing (Farrag, K and Shirazi, H), Dec., 414

Tensile loads

Effect of in-plane tensile loads on the retention characteristics of geotextiles (Fourie, AB and Addis, P), June, 211

Triaxial testing

Automatic volume measuring device for testing dry soils: "Martina" (Fioravante, V and Capoferri, R), Dec., 423

Constant p' and constant volume friction angles are different (Kutter, BL and Chen, Y-R), Sept., 304

Equipment for one-dimensional compression and triaxial testing of unsaturated granular soils at low stress levels (Anderson, WF, Goodwin, AK, Pyrah, IC, and Salman, TH), March, 74

Measurement of volume changes in triaxial tests using digital imaging techniques (Macari, EJ, Parker, JK, and Costes, NC), March, 103

Upgrading equipment and procedures for stress path triaxial testing of coarsegrained materials (Flora, A and Modoni, G), Dec., 459

U

Ultrasonic methods

Ultrasonic method for evaluation of annular seals for wells and instrument holes (Yesiller, N, Edil, TB, and Benson, CH), March, 17

Unsaturated soils

Determination of shear strength parameters of unsaturated silts and sands based on the water retention curve (Öberg, A-L and Sällfors, G), March, 40

Equipment for one-dimensional compression and triaxial testing of unsaturated granular soils at low stress levels (Anderson, WF, Goodwin, AK, Pyrah, IC, and Salman, TH), March, 74

Laboratory studies on the volume change characteristics of kaolinite contaminated with sodium phosphate/sulfate (Rao, SM and Reddy, PMR), Sept., 362

V–X

Velocity

Low strain measurements using random noise excitation (Cascante, G and Santa-marina, C), March, 29

Volume change

Measurement of volume changes in triaxial tests using digital imaging techniques (Macari, EJ, Parker, JK, and Costes, NC), March, 103

Well seals

Ultrasonic method for evaluation of annular seals for wells and instrument holes (Yesiller, N, Edil, TB, and Benson, CH), March, 17

Wetlands

Design and performance of a portable piezocone driver for high resolution profiling of wetland sediments (Zeeb, PJ, Hemond, HF, and Germaine, JT), June, 191

X-ray absorption

Particle-size analysis of soils using laser light scattering and X-ray absorption technology (Vitton, SJ and Sadler, LY), March, 63