
J. Test. Eval, Mar. 1994, Vol. 22, No.2

BOOK REVIEWS

Ensuring Software Reliability

Reviewed by Robert Megargle, Department of Chemistry,
Cleveland State University, Cleveland, OH 44115.

REFERENCE: Neufelder, A. M., Ensuring Software Reliability,
Marcel Dekker, Inc., New York, 1993, ISBN: 0-8247-8762-5, 242
pages.

Anyone who has worked on a medium to complex program-
ming project, one that requires more than a few days to com-
plete, knows how difficult and time-consuming it is to test soft-
ware and find errors. It often requires several times more effort
to locate and fix bugs than to design and write the program. At
first we blame ourselves, thinking it is our own inadequacies
that cause us to make so many mistakes. We soon learn that
almost everyone has the same experiences. These realizations
have led to studies of the process of developing software, un-
dertaken to find out if there are ways to contain the errors or
facilitate their locations and corrections. The current status of
this field of study is reviewed in this book, which is Volume 38
of Dekker 's extensive series on "Qual i ty and Reliabil i ty" edited
by E. G. Schilling.

The first part of the book contains a general discussion of the
nature of software errors, where they come from, and what fac-
tors contribute to the problem. Many errors are due to unclear
or incomplete functional requirements. The process of transfer-
ring a description of the task to be implemented from the minds
of the intended users to the minds of the software developers is
fraught with peril. Jargon, unstated assumptions, and other
flawed communication is common. Poor initial planning also
leads to frequent late changes to the requirements, resulting in
hasty patches and reworked segments that tend to introduce
more errors. Other problems are due to changes in environment,
such as new hardware or upgrades to the software tools. Many
errors really are coding or logic mistakes by the programmer.
Introducing new errors while trying to fix old ones is also com-
mon. The first chapters serve to define terminology and give the
reader an introductory overview of the subject of software
reliability.

The book then discusses formal methods for documenting
each error found. The nature of the error, the most probable
source, the date and time of its discovery, its severity, how it
was fixed, and other such information is recorded. Any kind of
formal tracking or analysis of the error patterns requires reason-
ably objective data. It is the analysis of these patterns that allow
problems in software development methodology to be discov-
ered and corrected.

Usually the initial testing of a new program uncovers many
errors in a short amount of time. As they are fixed, the error
discovery rate decreases until only a few errors are found for
extensive testing. When the error discovery rate is sufficiently
low, the testing is stopped and the program is declared to be
ready for use. Knowing when to make this decision is crucial

to happy customers, a good professional image, fewer lawsuits,
and more profits. Neufelder briefly reviews a number of software
reliability models that rely on the formal error reports, and pro-
vide a more objective basis to make management decisions
about the project.

The third part of the book deals with methods for improving
software reliability. It is a collection of recommendations for
writing programs that have fewer errors, in which errors are
easier to detect, and where the routines can be better maintained.
Neufelder favors structured coding techniques, keeping individ-
ual modules simple, minimizing global variables, and extensive
error checking within the program modules. She recommends
good source code documentation to reduce errors introduced
during subsequent revisions. A very thorough list of information
to be included is given.

This section also discusses strategies for testing the software.
Included is a systematic plan to ensure all pathways through
each module are tested. Each algorithm and logic decision point
should be verified in all possible combinations. There must be
a set of tests that verifies that each functional requirement has
been met. Making sure software does not do what it is not sup-
posed to do is more difficult than verifying that it performs cor-
rectly when used correctly. There are many more error cases in
most programs than correct cases. "Software Fault Tree Anal-
ys is" and "Fai lure Mode Effect and Critical Analysis" are two
tools presented to help with this problem.

The book provides a very brief introduction on the use of
automated tools for software reliability. Some of the criteria for
these tools, and the functions they might perform, are presented.
Included are programs to capture and track errors, report results
based on particular error models, produce test data cases, and
provide configuration management to track the development his-
tory of a program. This section is more of an alert to the reader
about the possibility of automated tools, as opposed to a com-
prehensive discussion of available products.

Finally, the book ends with a discussion of tactics for imple-
menting formal software reliability methods in an organization.
Neufelder shares her experience on the best ways to demonstrate
the advantages of such a program, warns about containing the
costs, and recommends keeping a list of lessons learned and
successes achieved. As with any new idea that changes the con-
ventional way of doing business, some resistance can be ex-
pected until the benefits are clearly established.

This book is a good introductory overview of software relia-
bility, an emerging subdiscipline within the field of software
engineering. The level of presentation in some sections is not
sufficient to actually implement the procedures. However, the
book gives good references that can be used to fill in the details.
The book is well organized and understandable, but the style of
writing is a detraction. It could benefit from good editing. There
are too many sentences that end disconcertedly with preposi-
tions. There is an awkwardness in numerous places from the
repeated use of the same phrase, sentence after sentence. Aside
from this, the content of the book is sound and worthy of a place
on the bookshelves of those who make their living writing
software.

Copyright © 1994 by ASTM International

179

www.astm.org

