Journal Published Online: 06 July 2016
Volume 39, Issue 5

Modeling Long-Term Deformations of Unbound Pavement Materials Using the Miniaturized Pressuremeter Creep Data



This research was undertaken to study the predictive capability of the pressuremeter test for characterizing in situ creep behavior of unbound pavement layers. Although the creep potential of granular pavement materials is less pronounced than fine-grained soils, consideration of actual creep deformations in the pavement evaluation process will improve long-term pavement performance. In this investigation, the long-term deformations determined from laboratory one-dimensional creep tests were compared with those investigated by field pressuremeter tests. The pressuremeter test consisted of inflating a cylindrical probe incrementally up to a given stress level, and then maintaining the pressure constant for a 5-min single stage. During this stage, radial deformations of the soil cavity were recorded at each 30-s interval. The one-dimensional creep test was performed on remolded soil specimens through applying a constant stress level for 7 days. Comparison of creep parameters deduced from pressuremeter and creep tests data was based on the Singh–Mitchell creep model. The results showed that the average strain rates derived from in situ pressuremeter data are valid, and compare well with those predicted from the laboratory creep test. Thus, the pressuremeter device can be employed to assess field strain–time behavior of pavement systems in a fast and reliable approach.

Author Information

Shaban, Alaa
Civil Engineering Dept., Engineering College, Florida Inst. of Technology, Melbourne, FL, US
Cosentino, Paul
Civil Engineering Dept., Engineering College, Florida Inst. of Technology, Melbourne, FL, US
Pages: 14
Price: $25.00
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Stock #: GTJ20150273
ISSN: 0149-6115
DOI: 10.1520/GTJ20150273