Journal Published Online: 01 June 2006
Volume 29, Issue 5

Evaluation of Quasi-Elastic Properties of Gravel Using a Large-Scale True Triaxial Apparatus

CODEN: GTJODJ

Abstract

In order to investigate the anisotropy in the deformation characteristics of gravel, a large-scale true triaxial apparatus that can control three principal stresses independently has been newly developed. One of the two horizontal stresses is applied by means of rigid vertical platens that confine the specimen, to induce a uniform horizontal strain over the height of the specimen in that one direction. A set of local deformation transducers and proximity transducers are used to measure strains to minimize the effects of specimen corners, bedding error, and system compliance. Specimens have a prismatic rectangular shape with dimensions of 50 cm high and 25 cm × 22 cm in cross section. Using this apparatus, a couple of tests were conducted on gravel specimens prepared by manual compaction at a water content of 5.5% to reach dry densities of 2.0 and 2.2 g/cm3. At several stress states, during isotropic compression and subsequent triaxial loading, vertical and horizontal loading cycles of a very small stress amplitude were applied to evaluate the quasi-elastic deformation properties. The test results show that the small-strain quasi-elastic Young's modulus in a given direction is essentially a unique function of the normal stress in the same direction, regardless of the density of the specimen. Although this is contrary to some of the well-established models used in practice, it is consistent with results of relevant laboratory tests by others. Small-strain quasi-elastic vertical and horizontal Young's moduli exhibited effects of inherent and stress state-induced anisotropies. Performing cyclic loading tests of successively increased the stress amplitude, strain-level dependency of the equivalent Young's modulus and hysteretic damping ratio in both the vertical and horizontal directions was obtained.

Author Information

AnhDan, LQ
Ellis & Associates, Inc., Jacksonville, Florida
Koseki, J
Institute of Industrial Science, University of Tokyo, Japan
Sato, T
Institute of Industrial Science, University of Tokyo, Japan
Pages: 11
Price: $25.00
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Stock #: GTJ100221
ISSN: 0149-6115
DOI: 10.1520/GTJ100221