Standard Historical Last Updated: Aug 13, 2021 Track Document
ASTM F3244-17

Standard Test Method for Navigation: Defined Area

Standard Test Method for Navigation: Defined Area F3244-17 ASTM|F3244-17|en-US Standard Test Method for Navigation: Defined Area Standard new BOS Vol. 15.13 Committee F45
$ 83.00 In stock

Significance and Use

5.1 A-UGVs operate in a wide range of applications such as manufacturing facilities and warehouses. Fig. 8 shows three example A-UGV types and test apparatus sizes to test A-UGVs intended for different vehicle tasks, types, sizes, and capabilities. Such sites can have both defined and undefined areas that are structured and unstructured. The testing results of the candidate A-UGV shall describe, in a statistically significant way, the ability of the A-UGV to traverse the commanded path. Whether or not an A-UGV is able to deviate from its path, or uses features of the local environment as input to its navigation method or both, should not result in a different test method. Rather, the capabilities of the A-UGV to adapt its navigation method in a given environment will be objectively determined by its performance in the test method.

5.2 Three different manners in which a test method can be rendered are specified for use: physical boundaries, virtual boundaries, and floor markings (see Section 6 for apparatus specifics). The test method(s) chosen shall be appropriate to the application and environment in which the A-UGV will be used.

5.3 These test methods address A-UGV performance requirements expressed by A-UGV manufacturers and potential A-UGV users. The performance data captured by these test methods are indicative of the capabilities of the A-UGV and the application represented by the test.

5.4 The test apparatuses are scalable to constrain A-UGV sizes in defined areas to meet current and advanced next generation manufacturing and distribution facility operations.

5.5 The standard apparatuses are specified to be easily fabricated to facilitate self-evaluation by A-UGV developers and users and provide practice tasks for A-UGV developers, users, and potential users that exercise A-UGV actuators, sensors, and controls.

5.6 Although the test methods were developed first for A-UGVs, they may also be applicable to mobile manipulators and other types of industrial automated mobility equipment, as well as in other domains.


1.1 Purpose: 

1.1.1 The purpose of this test method is to evaluate an A-unmanned ground vehicle’s (A-UGV) capability of traversing through a defined space with limited A-UGV clearance. This test method is intended for use by A-UGV manufacturers, installers, and users. This test method defines a set of generic 2D area shapes representative of user applications and for different A-UGV types.

1.1.2 A-UGVs shall possess a certain set of navigation capabilities appropriate to A-UGV operations such as A-UGV movement between structures that define the vehicle path. A navigation system is the monitoring and controlling functions of the A-UGV, providing frequent A-UGV updates of vehicle movement from one place to another. A-UGV environments often include various constraints to A-UGV mobility. In this test method, apparatuses, procedures, tasks, and metrics are specified that apply constraints and thereby, standard test methods for determining an A-UGV’s navigation capabilities are defined.

1.1.3 This test method is scalable to provide a range of dimensions to constrain the A-UGV mobility during task performance.

1.1.4 A-UGVs shall be able to handle many types of open and defined area complexities with appropriate precision and accuracy to perform a particular task.

1.1.5 The required mobility capabilities include preprogrammed or autonomous movement or both from a start point to an end point. Further mobility requirements may include: sustained speeds, vehicle reconfiguration to pass through defined spaces, payload, A-UGV movement within constrained volumes, or other vehicle capabilities, or combinations thereof. This test method is designed such that a candidate A-UGV can be evaluated as to whether or not it meets a set of user application requirements.

1.1.6 Performing Location—This test method shall be performed in a location where the apparatus and environmental test conditions can be fully implemented. Environmental conditions are specified and recorded.

1.1.7 Additional test methods within Committee F45 are anticipated to be developed to address additional or advanced mobility capability requirements.

1.2 Units—The values stated in SI units are to be regarded as the standard. The values given in parentheses are not precise mathematical conversions to inch-pound units. They are close approximate equivalents for the purpose of specifying material dimensions or quantities that are readily available to avoid excessive fabrication costs of test apparatuses while maintaining repeatability and reproducibility of the test method results. These values given in parentheses are provided for information only and are not considered standard.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. Safety standards such as ANSI/ITSDF B56.5, BS EN 1525, or other safety standards should be followed. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Contact Sales
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Book of Standards Volume: 15.13
Developed by Subcommittee: F45.02
Pages: 12
DOI: 10.1520/F3244-17
ICS Code: 35.240.60; 43.020