Standard Historical Last Updated: Mar 04, 2021 Track Document
ASTM E1006-13

Standard Practice for Analysis and Interpretation of Physics Dosimetry Results from Test Reactor Experiments

Standard Practice for Analysis and Interpretation of Physics Dosimetry Results from Test Reactor Experiments E1006-13 ASTM|E1006-13|en-US Standard Practice for Analysis and Interpretation of Physics Dosimetry Results from Test Reactor Experiments Standard new BOS Vol. 12.02 Committee E10
$ 75.00 In stock

Significance and Use

3.1 The mechanical properties of steels and other metals are altered by exposure to neutron radiation. These property changes are assumed to be a function of chemical composition, metallurgical condition, temperature, fluence (perhaps also fluence rate), and neutron spectrum. The influence of these variables is not completely understood. The functional dependency between property changes and neutron radiation is summarized in the form of damage exposure parameters that are weighted integrals over the neutron fluence spectrum.

3.2 The evaluation of neutron radiation effects on pressure vessel steels and the determination of safety limits require the knowlege of uncertainties in the prediction of radiation exposure parameters (for example, dpa (Practice E693), neutron fluence greater than 1.0 MeV, neutron fluence greater than 0.1 MeV, thermal neutron fluence, etc.). This practice describes recommended procedures and data for determining these exposure parameters (and the associated uncertainties) for test reactor experiments.

3.3 The nuclear industry draws much of its information from databases that come from test reactor experiments. Therefore, it is essential that reliable databases are obtained from test reactors to assess safety issues in Light Water Reactor (LWR) nuclear power plants.

Scope

1.1 This practice covers the methodology summarized in Annex A1 to be used in the analysis and interpretation of physics-dosimetry results from test reactors.

1.2 This practice relies on, and ties together, the application of several supporting ASTM standard practices, guides, and methods.

1.3 Support subject areas that are discussed include reactor physics calculations, dosimeter selection and analysis, exposure units, and neutron spectrum adjustment methods.

1.4 This practice is directed towards the development and application of physics-dosimetry-metallurgical data obtained from test reactor irradiation experiments that are performed in support of the operation, licensing, and regulation of LWR nuclear power plants. It specifically addresses the physics-dosimetry aspects of the problem. Procedures related to the analysis, interpretation, and application of both test and power reactor physics-dosimetry-metallurgy results are addressed in Practices E185, E853, and E1035, Guides E900, E2005, E2006 and Test Method E646.

1.5 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Price:
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Book of Standards Volume: 12.02
Developed by Subcommittee: E10.05
Pages: 7
DOI: 10.1520/E1006-13
ICS Code: 17.240