Standard Active Last Updated: Apr 18, 2022 Track Document
ASTM E972-96(2021)

Standard Test Method for Solar Photometric Transmittance of Sheet Materials Using Sunlight

Standard Test Method for Solar Photometric Transmittance of Sheet Materials Using Sunlight E0972-96R21 ASTM|E0972-96R21|en-US Standard Test Method for Solar Photometric Transmittance of Sheet Materials Using Sunlight Standard new BOS Vol. 12.02 Committee E44
$ 55.00 In stock

Significance and Use

5.1 Glazed apertures in buildings are generally utilized for the controlled admission of both light and solar radiant heat energy into the structure. Other devices may also be used to reflect light and solar radiant heat into a building.

5.2 The bulk of the solar radiant energy entering a building in this manner possesses wavelengths that lie from 300 to 2500 nm (3000 to 25 000 Å). Only the portion from 380 to 760 nm (3800 to 7600 Å) is visible radiation, however. In daylighting applications, it is therefore important to distinguish the radiant (solar radiant energy) transmittance or reflectance of these materials from their luminous (light) transmittance or reflectance.

5.3 For comparisons of the energy and illumination performances of building fenestration systems it is important that the calculation or measurement, or both, of solar radiant and luminous transmittance and reflectance of materials used in fenestration systems use the same incident solar spectral distribution.

5.4 Solar luminous transmittance and reflectance are important properties in describing the performance of components of solar illumination systems including windows, clerestories, skylights, shading and reflecting devices, and other passive fenestrations that permit the passage of daylight as well as solar radiant heat energy into buildings.

5.5 This test method is useful for determining the solar luminous transmittance and reflectance of optically inhomogeneous sheet materials and diffusely reflecting materials used in natural lighting systems that are used alone or in conjunction with passive or active solar heating systems, or both. This test method provides a means of measuring solar luminous transmittance under fixed conditions of incidence and viewing. This test method has been found practical for both transparent and translucent materials as well as for those with transmittances reduced by reflective coatings. This test method is particularly applicable to the measurement of luminous transmittance of inhomogeneous, fiber reinforced, patterned, corrugated, or otherwise optically inhomogeneous materials when the transmittance is averaged over an area that is large in comparison to the inhomogeneities.

Scope

1.1 This test method covers the measurement of solar photometric transmittance of materials in sheet form. Solar photometric transmittance is measured using a photometer (illuminance meter) in an enclosure with the sun and sky as the source of radiation. The enclosure and method of test is specified in Test Method E1175 (or Test Method E1084).

1.2 The purpose of this test method is to specify a photometric sensor to be used with the procedure for measuring the solar photometric transmittance of sheet materials containing inhomogeneities in their optical properties.

1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Price:
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Book of Standards Volume: 12.02
Developed by Subcommittee: E44.20
Pages: 4
DOI: 10.1520/E0972-96R21
ICS Code: 17.180.20