Standard Historical Last Updated: Aug 06, 2020 Track Document
ASTM E251-92(2014)

Standard Test Methods for Performance Characteristics of Metallic Bonded Resistance Strain Gages

Standard Test Methods for Performance Characteristics of Metallic Bonded Resistance Strain Gages E0251-92R14 ASTM|E0251-92R14|en-US Standard Test Methods for Performance Characteristics of Metallic Bonded Resistance Strain Gages Standard new BOS Vol. 03.01 Committee E28
$ 83.00 In stock

Significance and Use

4.1 Strain gages are the most widely used devices for the determination of materials, properties and for analyzing stresses in structures. However, performance parameters of strain gages are affected by both the materials from which they are made and their geometric design. These test methods detail the minimum information that must accompany strain gages if they are to be used with acceptable accuracy of measurement.

4.2 Most performance parameters of strain gages require mechanical testing that is destructive. Since test gages cannot be used again, it is necessary to treat data statistically and then apply values to the remaining population from the same lot or batch. Failure to acknowledge the resulting uncertainties can have serious repercussions. Resistance measurement is non-destructive and can be made for each gage.

4.3 Properly designed and manufactured strain gages, whose properties have been accurately determined and with appropriate uncertainties applied, represent powerful measurement tools. They can determine small dimensional changes in structures with excellent accuracy, far beyond that of other known devices. It is important to recognize, however, that individual strain gages cannot be calibrated. If calibration and traceability to a standard are required, strain gages should not be employed.

4.4 To be used, strain gages must be bonded to a structure. Good results depend heavily on the materials used to clean the bonding surface, to bond the gage, and to provide a protective coating. Skill of the installer is another major factor in success. Finally, instrumentation systems must be carefully designed to assure that they do not unduly degrade the performance of the gages. In many cases, it is impossible to achieve this goal. If so, allowance must be made when considering accuracy of data. Test conditions can, in some instances, be so severe that error signals from strain gage systems far exceed those from the structural deformations to be measured. Great care must be exercised in documenting magnitudes of error signals so that realistic values can be placed on associated uncertainties.

Scope

1.1 The purpose of these test methods are to provide uniform test methods for the determination of strain gage performance characteristics. Suggested testing equipment designs are included.

1.2 Test Methods E251 describes methods and procedures for determining five strain gage parameters:

 

Section

Part I—General Requirements

7

Part II—Resistance at a Reference Temperature

8

Part III—Gage Factor at a Reference Temperature

9

Part IV—Temperature Coefficient of Gage Factor

10

Part V—Transverse Sensitivity

11

Part VI—Thermal Output

12

1.3 Strain gages are very sensitive devices with essentially infinite resolution. Their response to strain, however, is low and great care must be exercised in their use. The performance characteristics identified by these test methods must be known to an acceptable accuracy to obtain meaningful results in field applications.

1.3.1 Strain gage resistance is used to balance instrumentation circuits and to provide a reference value for measurements since all data are related to a change in the gage resistance from a known reference value.

1.3.2 Gage factor is the transfer function of a strain gage. It relates resistance change in the gage and strain to which it is subjected. Accuracy of strain gage data can be no better than the precision of the gage factor.

1.3.3 Changes in gage factor as temperature varies also affect accuracy although to a much lesser degree since variations are usually small.

1.3.4 Transverse sensitivity is a measure of the strain gage's response to strains perpendicular to its measurement axis. Although transverse sensitivity is usually much less than 10 % of the gage factor, large errors can occur if the value is not known with reasonable precision.

1.3.5 Thermal output is the response of a strain gage to temperature changes. Thermal output is an additive (not multiplicative) error. Therefore, it can often be much larger than the gage output from structural loading. To correct for these effects, thermal output must be determined from gages bonded to specimens of the same material on which the tests are to run, often to the test structure itself.

1.4 Bonded resistance strain gages differ from extensometers in that they measure average unit elongation (ΔL/L) over a nominal gage length rather than total elongation between definite gauge points. Practice E83 is not applicable to these gages.

1.5 These test methods do not apply to transducers, such as load cells and extensometers, that use bonded resistance strain gages as sensing elements.

1.6 strain gages are part of a complex system that includes structure, adhesive, gage, lead wires, instrumentation, and (often) environmental protection. As a result, many things affect the performance of strain gages, including user technique. A further complication is that strain gages once installed normally cannot be reinstalled in another location. Therefore, gage characteristics can be stated only on a statistical basis.

1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Price:
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Book of Standards Volume: 03.01
Developed by Subcommittee: E28.01
Pages: 20
DOI: 10.1520/E0251-92R14
ICS Code: 19.060