Standard Historical Last Updated: Jan 11, 2023 Track Document
ASTM D3649-06(2014)

Standard Practice for High-Resolution Gamma-Ray Spectrometry of Water (Withdrawn 2023)

Standard Practice for High-Resolution Gamma-Ray Spectrometry of Water (Withdrawn 2023) D3649-06R14 ASTM|D3649-06R14|en-US Standard Practice for High-Resolution Gamma-Ray Spectrometry of Water (Withdrawn 2023) Standard new BOS Vol. 11.02 Committee D19
$ 75.00 In stock
ASTM International

Significance and Use

5.1 Gamma-ray spectrometry is of use in identifying radionuclides and in making quantitative measurements. Use of a semiconductor detector is necessary for high-resolution measurements.

5.2 Variation of the physical geometry of the sample and its relationship with the detector will produce both qualitative and quantitative variations in the gamma-ray spectrum. To adequately account for these geometry effects, calibrations are designed to duplicate all conditions including source-to-detector distance, sample shape and size, and sample matrix encountered when samples are measured.

5.3 Since some spectrometry systems are calibrated at many discrete distances from the detector, a wide range of activity levels can be measured on the same detector. For high-level samples, extremely low-efficiency geometries may be used. Quantitative measurements can be made accurately and precisely when high activity level samples are placed at distances of 10 cm or more from the detector.

5.4 Electronic problems, such as erroneous deadtime correction, loss of resolution, and random summing, may be avoided by keeping the gross count rate below 2000 counts per second (s–1) and also keeping the deadtime of the analyzer below 5 %. Total counting time is governed by the radioactivity of the sample, the detector to source distance and the acceptable Poisson counting uncertainty.


1.1 This practice covers the measurement of gamma-ray emitting radionuclides in water by means of gamma-ray spectrometry. It is applicable to nuclides emitting gamma-rays with energies greater than 45 keV. For typical counting systems and sample types, activity levels of about 40 Bq are easily measured and sensitivities as low as 0.4 Bq are found for many nuclides. Count rates in excess of 2000 counts per second should be avoided because of electronic limitations. High count rate samples can be accommodated by dilution, by increasing the sample to detector distance, or by using digital signal processors.

1.2 This practice can be used for either quantitative or relative determinations. In relative counting work, the results may be expressed by comparison with an initial concentration of a given nuclide which is taken as 100 %. For quantitative measurements, the results may be expressed in terms of known nuclidic standards for the radionuclides known to be present. This practice can also be used just for the identification of gamma-ray emitting radionuclides in a sample without quantifying them. General information on radioactivity and the measurement of radiation has been published (1,2).2 Information on specific application of gamma spectrometry is also available in the literature (3-5). See also the referenced ASTM Standards in 2.1 and the related material section at the end of this standard.

1.3 This standard does not purport to address the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitation prior to use.

Contact Sales
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Book of Standards Volume: 11.02
Developed by Subcommittee: D19.04
Pages: 8
DOI: 10.1520/D3649-06R14
ICS Code: 71.040.50