Standard Historical Last Updated: Dec 04, 2023 Track Document
ASTM D2973-22

Standard Test Method for Total Nitrogen in Peat Materials

Standard Test Method for Total Nitrogen in Peat Materials D2973-22 ASTM|D2973-22|en-US Standard Test Method for Total Nitrogen in Peat Materials Standard new BOS Vol. 04.08 Committee D18
$ 66.00 In stock
ASTM International

Significance and Use

5.1 Nitrogen content is important as it is one of the primary plant food elements necessary for plant growth. Nitrogen content of peat is necessary to make sure an adequate, but not excessive amount of fertility is supplied to the target plant. Nitrogen is present in peat as organic nitrogen, and therefore, does not release nitrogen to plants as quickly as chemical fertilizers. However, nitrogen from peat continues to be released for several years as the organic matter decomposes.

5.2 This information is particularly useful to people working in industries where plant health, sustainability, and viability are important.

Note 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.


1.1 This test method covers a chemical test method for the determination of the mass percent of nitrogen in peat material.

1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.

1.3.1 The procedures used to specify how data are collected/recorded or calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.

1.4 Warning—Mercury has been designated by many regulatory agencies as a hazardous material that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury containing products. See the applicable Safety Data Sheet (SDS) for additional information. Users should be aware that selling mercury and/or mercury containing products into your state or country may be prohibited by law.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Contact Sales
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Book of Standards Volume: 04.08
Developed by Subcommittee: D18.22
Pages: 4
DOI: 10.1520/D2973-22
ICS Code: 65.080