Standard Active Last Updated: Nov 06, 2020 Track Document
ASTM D1754/D1754M-20

Standard Test Method for Effects of Heat and Air on Asphaltic Materials (Thin-Film Oven Test)

Standard Test Method for Effects of Heat and Air on Asphaltic Materials (Thin-Film Oven Test) D1754_D1754M-20 ASTM|D1754_D1754M-20|en-US Standard Test Method for Effects of Heat and Air on Asphaltic Materials (Thin-Film Oven Test) Standard new BOS Vol. 04.03 Committee D04
$ 69.00 In stock

Significance and Use

5.1 This method indicates approximate change in properties of asphalt during conventional hot-mixing at about 150 °C [302 °F] as indicated by viscosity, penetration, or ductility measurements. It yields a residue which approximates the asphalt condition as incorporated in the pavement. If the mixing temperature differs appreciably from the 150 °C [302 °F] level, more or less effect on properties will occur.

Note 1: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.

Scope

1.1 This test method covers the determination of the effects of heat and air on a film of semisolid asphaltic materials. The effects of this treatment are determined from measurements of selected asphalt properties before and after the test.

1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.

1.3 Warning—Mercury has been designated by the United States Environmental Protection Agency and many state agencies as a hazardous material that can cause central nervous system, kidney, and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury-containing products. See the applicable Material Safety Data Sheet (MSDS) for details and EPA’s website—http://www.epa.gov/mercury/index.htm—for additional information. Users should be aware that selling mercury and/or mercury-containing products into your state may be prohibited by state law.

1.4 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Price:
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Book of Standards Volume: 04.03
Developed by Subcommittee: D04.46
Pages: 7
DOI: 10.1520/D1754_D1754M-20
ICS Code: 75.140