Standard Active Last Updated: Jun 28, 2023 Track Document
ASTM G35-23

Standard Practice for Determining the Susceptibility of Stainless Steels and Related Nickel-Chromium-Iron Alloys to Stress-Corrosion Cracking in Polythionic Acids

Standard Practice for Determining the Susceptibility of Stainless Steels and Related Nickel-Chromium-Iron Alloys to Stress-Corrosion Cracking in Polythionic Acids G0035-23 ASTM|G0035-23|en-US Standard Practice for Determining the Susceptibility of Stainless Steels and Related Nickel-Chromium-Iron Alloys to Stress-Corrosion Cracking in Polythionic Acids Standard new BOS Vol. 03.02 Committee G01
$ 55.00 In stock
ASTM International

Significance and Use

4.1 Polythionic acids are chemically described as H2SxO6, where x is usually 3, 4, or 5 (1)3 though can be more than 50 (2). These acid environments provide a way of evaluating the resistance of stainless steels and related alloys to intergranular stress corrosion cracking. Failure is accelerated by the presence of increasing amounts of intergranular precipitate. Results for the polythionic acid test have not been correlated exactly with those of intergranular corrosion tests (Test Methods G28). Also, this test may not be relevant to stress corrosion cracking in chlorides or caustic environments.

4.2 The polythionic acid environment may produce areas of shallow intergranular attack in addition to the more localized and deeper cracking mode of attack. Examination of failed specimens is necessary to confirm that failure occurred by cracking rather than mechanical failure of reduced sections.

Scope

1.1 This practice covers procedures for preparing and conducting the polythionic acid test at room temperature, 22 °C to 25 °C (72 °F to 77 °F), to determine the relative susceptibility of stainless steels or other related materials (nickel-chromium-iron alloys) to intergranular stress corrosion cracking.

1.2 This practice can be used to evaluate stainless steels or other materials in the “as received” condition or after being subjected to high-temperature service, 482 °C to 815 °C (900 °F to 1500 °F), for prolonged periods of time.

1.3 This practice can be applied to wrought products, castings, and weld metal of stainless steels or other related materials to be used in environments containing sulfur or sulfides. Other materials capable of being sensitized can also be tested in accordance with this test.

1.4 This practice may be used with a variety of stress corrosion test specimens, surface finishes, and methods of applying stress.

1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.

1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For more specific precautionary statements, see Section 7.

1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Price:
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Book of Standards Volume: 03.02
Developed by Subcommittee: G01.06
Pages: 3
DOI: 10.1520/G0035-23
ICS Code: 77.040.10; 77.060