If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass
    ASTM F3187 - 16

    Standard Guide for Directed Energy Deposition of Metals

    Active Standard ASTM F3187 | Developed by Subcommittee: F42.05

    Book of Standards Volume: 10.04

      Format Pages Price  
    PDF 22 $75.00   ADD TO CART
    Hardcopy (shipping and handling) 22 $75.00   ADD TO CART

    Significance and Use

    5.1 This guide applies to directed energy deposition (DED) systems and processes, including electron beam, laser beam, and arc plasma based systems, as well as applicable material systems.

    5.2 Directed energy deposition (DED) systems have the following general collection of characteristics: ability to process large build volumes (>1000 mm3), ability to process at relatively high deposition rates, use of articulated energy sources, efficient energy utilization (electron beam and arc plasma), strong energy coupling to feedstock (electron beam and arc plasma), feedstock delivered directly to the melt pool, ability to deposit directly onto existing components, and potential to change chemical composition within a build to produce functionally graded materials. Feedstock for DED is delivered to the melt pool in coordination with the energy source, and the deposition head (typically) indexes up from the build surface with each successive layer.

    5.3 Although DED systems can be used to apply a surface cladding, such use does not fit the current definition of AM. Cladding consists of applying a uniform buildup of material on a surface. To be considered AM, a computer aided design (CAD) file of the build features is converted into section cuts representing each layer of material to be deposited. The DED machine then builds up material, layer-by-layer, so material is only applied where required to produce a part, add a feature or make a repair.

    5.4 DED has the ability to produce relatively large parts requiring minimal tooling and relatively little secondary processing. In addition, DED processes can be used to produce components with composition gradients, or hybrid structures consisting of multiple materials having different compositions and structures. DED processes are also commonly used for component repair and feature addition.

    5.5 Fig. 1 gives a general guide as to the relative capabilities of the main DED processes compared to others currently used for metal additive manufacturing. The figure does not include all process selection criteria, and it is not intended to be used as a process selection method.

    Note 1: In this figure, Build Volume refers to the relative size of components that can be processed by the subject process. Detail Resolution refers to the ability of the process to create small features. Deposition Rate refers to the rate at which a given mass of product can be produced. Coupling Efficiency refers to the efficiency of energy transfer from the energy source to the substrate, and Potential for Contamination refers to the potential to entrain dirt, gas, and other possible contaminants within the part.

    1. Scope

    1.1 Directed Energy Deposition (DED) is used for repair, rapid prototyping and low volume part fabrication. This document is intended to serve as a guide for defining the technology application space and limits, DED system set-up considerations, machine operation, process documentation, work practices, and available system and process monitoring technologies.

    1.2 DED is an additive manufacturing process in which focused thermal energy is used to fuse materials by melting as they are being deposited.

    1.3 DED Systems comprise multiple categories of machines using laser beam (LB), electron beam (EB), or arc plasma energy sources. Feedstock typically comprises either powder or wire. Deposition typically occurs either under inert gas (arc systems or laser) or in vacuum (EB systems). Although these are the predominant methods employed in practice, the use of other energy sources, feedstocks and atmospheres may also fall into this category.

    1.4 The values stated in SI units are to be regarded as standard. All units of measure included in this guide are accepted for use with the SI.

    1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    B214 Test Method for Sieve Analysis of Metal Powders

    C1145 Terminology of Advanced Ceramics

    D6128 Test Method for Shear Testing of Bulk Solids Using the Jenike Shear Tester

    E11 Specification for Woven Wire Test Sieve Cloth and Test Sieves

    E1316 Terminology for Nondestructive Examinations

    E1515 Test Method for Minimum Explosible Concentration of Combustible Dusts

    F327 Practice for Sampling Gas Blow Down Systems and Components for Particulate Contamination by Automatic Particle Monitor Method

    ASQ Standard

    ASQ C-1 Specification of General Requirement For A Quality Program

    AWS Standards

    A3.0/A3.0M Standard Welding Terms and Definitions

    A5.01/A5.01M Procurement Guidelines for ConsumablesWelding and Allied Processes

    A5.02/A5.02M Specification for Filler MetalStandard Sizes Packaging and Physical Attributes


    A5.16/A5.16M Specification for Titanium and Titanium-Alloy Welding Electrodes and Rods

    DIN Standard

    DIN 4188 Screening Surfaces; Wire Screens for Test Sieves, Dimensions

    ISO Standards

    ISO 6983-2 Numerical control of machines Program format and definition of address words Part 1: Data format for positioning, line motion and contouring control systems

    ISO 9001 Quality Management Systems: Requirements

    NFPA Standard

    NFPA 484 Standard for Combustible Metals

    ICS Code

    ICS Number Code 25.160.10 (Welding processes); 77.020 (Production of metals)

    UNSPSC Code

    UNSPSC Code 31133700(Powdered metals and metal alloys)

    Referencing This Standard
    Link Here
    Link to Active (This link will always route to the current Active version of the standard.)

    DOI: 10.1520/F3187-16

    Citation Format

    ASTM F3187-16, Standard Guide for Directed Energy Deposition of Metals, ASTM International, West Conshohocken, PA, 2016, www.astm.org

    Back to Top