If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass
    ASTM E910 - 18

    Standard Test Method for Application and Analysis of Helium Accumulation Fluence Monitors for Reactor Vessel Surveillance

    Active Standard ASTM E910 | Developed by Subcommittee: E10.05

    Book of Standards Volume: 12.02

      Format Pages Price  
    PDF 12 $60.00   ADD TO CART
    Hardcopy (shipping and handling) 12 $60.00   ADD TO CART
    Standard + Redline PDF Bundle 24 $72.00   ADD TO CART

    Significance and Use

    5.1 The HAFM test method is one of several available passive neutron dosimetry techniques (see, for example, Test Methods E854 and E1005). This test method can be used in combination with other dosimetry methods, or, if sufficient data are available from different HAFM sensor materials, as an alternative dosimetry test method. The HAFM method yields a direct measurement of total helium production in an irradiated sample. Absolute neutron fluence can then be inferred from this, assuming the appropriate spectrum integrated total helium production cross section. Alternatively, a calibration of the composite neutron detection efficiency for the HAFM method may be obtained by exposure in a benchmark neutron field where the fluence and spectrum averaged cross section are both known (see Guide E2005).

    5.2 HAFMs have the advantage of producing an end product, helium, which is stable, making the HAFM method very attractive for both short-term and long-term fluence measurements without requiring time-dependent corrections for decay. HAFMs are therefore ideal passive, time-integrating fluence monitors. Additionally, the burnout of the daughter product, helium, is negligible.

    5.2.1 Many of the HAFM materials can be irradiated in the form of unencapsulated wire segments (see 1.1.2). These segments can easily be fabricated by cutting from a standard inventoried material lot. The advantage is that encapsulation, with its associated costs, is not necessary. In several cases, unencapsulated wires such as Fe, Ni, Al/Co, and Cu, which are already included in the standard radiometric (RM) dosimetry sets (Table 1) can be used for both radiometric and helium accumulation dosimetry. After radiometric counting, the samples are later vaporized for helium measurement.

    (A) Evaluated 235U fission neutron spectrum averaged helium production cross section and energy range in which 90 % of the reactions occur. All values are obtained from ENDF/B-V Gas Production Dosimetry File data. Bracketed terms indicate cross section is for naturally occurring element.
    (B) Often included in dosimetry sets as a radiometric monitor, either as a pure element foil or wire or, in the case of aluminum, as an allaying material for other elements.

    5.3 The HAFM method is complementary to RM and solid state track recorder (SSTR) foils, and has been used as an integral part of the multiple foil method. The HAFM method follows essentially the same principle as the RM foil technique, which has been used successfully for accurate neutron dosimetry. Various HAFM sensor materials exist which have significantly different neutron energy sensitivities from each other. HAFMs containing 10B and 6Li have been used routinely in LMFBR applications in conjunction with RM foils. The resulting data are entirely compatible with existing adjustment methods for radiometric foil neutron dosimetry (refer to Guide E944 ).

    5.4 An application for the HAFM method lies in the direct analysis of pressure vessel wall scrapings or Charpy block surveillance samples. Measurements of the helium production in these materials can provide in situ integral information on the neutron fluence spectrum. This application can provide dosimetry information at critical positions where conventional dosimeter placement is difficult if not impossible. Analyses must first be conducted to determine the boron, lithium, and other component concentrations, and their homogeneities, so that their possible contributions to the total helium production can be determined. Boron (and lithium) can be determined by converting a fraction of the boron to helium with a known thermal neutron exposure. Measurements of the helium in the material before and after the exposure will enable a determination of the boron content (7). Boron level down to less than 1 wt. ppm can be obtained in this manner.

    5.5 By careful selection of the appropriate HAFM sensor material and its mass, helium concentrations ranging from 10−14 to 10−1 atom fraction can be generated and measured. In terms of fluence, this represents a range of roughly 1012 to 1027 n/cm2. Fluence (>1 MeV) values that may be encountered during routine surveillance testing are expected to range from 3 × 1014 to 2 × 10 20 n/cm2, which is well within the range of the HAFM technique.

    5.6 The analysis of HAFMs requires an absolute determination of the helium content. The analysis system specified in this test method incorporates a specialized mass spectrometer in conjunction with an accurately calibrated helium spiking system. Helium determination is by isotope dilution with subsequent isotope ratio measurement. The fact that the helium is stable makes the monitors permanent with the helium analysis able to be conducted at a later time, often without the inconvenience in handling caused by induced radioactivity. Such systems for analysis exist, and additional analysis facilities could be reproduced, should that be required. In this respect, therefore, the analytical requirements are similar to other ASTM test methods.

    1. Scope

    1.1 This test method describes the concept and use of helium accumulation for neutron fluence dosimetry for reactor vessel surveillance. Although this test method is directed toward applications in vessel surveillance, the concepts and techniques are equally applicable to the general field of neutron dosimetry. The various applications of this test method for reactor vessel surveillance are as follows:

    1.1.1 Helium accumulation fluence monitor (HAFM) capsules,

    1.1.2 Unencapsulated, or cadmium or gadolinium covered, radiometric monitors (RM) and HAFM wires for helium analysis,

    1.1.3 Charpy test block samples for helium accumulation, and

    1.1.4 Reactor vessel (RV) wall samples for helium accumulation.

    1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

    1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    C859 Terminology Relating to Nuclear Materials

    E170 Terminology Relating to Radiation Measurements and Dosimetry

    E261 Practice for Determining Neutron Fluence, Fluence Rate, and Spectra by Radioactivation Techniques

    E482 Guide for Application of Neutron Transport Methods for Reactor Vessel Surveillance

    E706 Master Matrix for Light-Water Reactor Pressure Vessel Surveillance Standards

    E844 Guide for Sensor Set Design and Irradiation for Reactor Surveillance

    E853 Practice for Analysis and Interpretation of Light-Water Reactor Surveillance Results

    E854 Test Method for Application and Analysis of Solid State Track Recorder (SSTR) Monitors for Reactor Surveillance

    E900 Guide for Predicting Radiation-Induced Transition Temperature Shift in Reactor Vessel Materials

    E944 Guide for Application of Neutron Spectrum Adjustment Methods in Reactor Surveillance

    E1005 Test Method for Application and Analysis of Radiometric Monitors for Reactor Vessel Surveillance

    E1018 Guide for Application of ASTM Evaluated Cross Section Data File

    E2005 Guide for Benchmark Testing of Reactor Dosimetry in Standard and Reference Neutron Fields

    ICS Code

    ICS Number Code 17.240 (Radiation measurements)

    UNSPSC Code

    UNSPSC Code 26142100(Nuclear reactor equipment)

    Referencing This Standard
    Link Here
    Link to Active (This link will always route to the current Active version of the standard.)

    DOI: 10.1520/E0910-18

    Citation Format

    ASTM E910-18, Standard Test Method for Application and Analysis of Helium Accumulation Fluence Monitors for Reactor Vessel Surveillance, ASTM International, West Conshohocken, PA, 2018, www.astm.org

    Back to Top