| Format | Pages | Price |   |
![]() |
15 | $58.00 | ![]() |
|
![]() |
Hardcopy (shipping and handling) | 15 | $58.00 | ![]() |
Significance and Use
5.1 This test method for the chemical analysis of nickel alloys is primarily intended to test material for compliance with compositional specifications such as those under jurisdiction of ASTM committee B02. It may also be used to test compliance with other specifications that are compatible with the test method.
5.2 It is assumed that all who use this method will be trained analysts capable of performing common laboratory procedures skillfully and safely, and that the work will be performed in a properly equipped laboratory.
5.3 It is expected that laboratories using this method will prepare their own work instructions. These work instructions will include detailed operating instructions for the specific laboratory including information such as applicable analytical methods, drift correction (standardization) protocols, verifiers, and performance acceptance criteria.
1. Scope
1.1 This method describes the spark atomic emission spectrometric (Spark-AES) analysis of nickel alloys, such as those specified by committee B02, having chemical compositions within the following limits:
Element | Application Range (Mass Fraction, %) |
Aluminum | 0.005-6.00 |
Boron | 0.001-0.10 |
Carbon | 0.005-0.15 |
Chromium | 0.01-33.00 |
Copper | 0.01-35.00 |
Cobalt | 0.01-25.00 |
Iron | 0.05-55.00 |
Magnesium | 0.001-0.020 |
Manganese | 0.01-1.00 |
Molybdenum | 0.01-35.00 |
Niobium | 0.01-6.0 |
Nickel | 25.00-100.0 |
Phosphorous | 0.001-0.025 |
Silicon | 0.01-1.50 |
Sulfur | 0.0001-0.01 |
Titanium | 0.0001-6.0 |
Tantalum | 0.01-0.15 |
Tin | 0.001-0.020 |
Tungsten | 0.01-5.0 |
Vanadium | 0.0005-1.0 |
Zirconium | 0.01-0.10 |
1.2 The following elements may be determined using this method.
Element | Quantification Range (Mass Fraction, %) |
Aluminum | 0.010-1.50 |
Boron | 0.004-0.025 |
Carbon | 0.014-0.15 |
Chromium | 0.09-20.0 |
Cobalt | 0.05-14.00 |
Copper | 0.03-0.6 |
Iron | 0.17-20 |
Magnesium | 0.001-0.03 |
Manganese | 0.04-0.6 |
Molybdenum | 0.07-5.0 |
Niobium | 0.02-5.5 |
Phosphorous | 0.005-0.020 |
Silicon | 0.07-0.6 |
Sulfur | 0.002-0.005 |
Tantalum | 0.025-0.15 |
Tin | 0.001-0.02 |
Titanium | 0.025-3.2 |
Tungsten | 0.02-0.10 |
Vanadium | 0.005-0.25 |
Zirconium | 0.01-0.05 |
1.3 This method has been interlaboratory tested for the elements and quantification ranges specified in section 1.2. The ranges in section 1.2 indicate intervals within which results have been demonstrated to be quantitative. It may be possible to extend this method to other elements or different composition ranges provided that a method validation study as described in Guide E2857 is performed and that the results of this study show that the method extension is meeting laboratory data quality objectives. Supplemental data on other elements not included in the scope are found in the supplemental data tables of the Precision and Bias section.
1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific safety hazard statements are given in Section 9.
2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.
ASTM Standards
E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
E135 Terminology Relating to Analytical Chemistry for Metals, Ores, and Related Materials
E177 Practice for Use of the Terms Precision and Bias in ASTM Test Methods
E305 Practice for Establishing and Controlling Atomic Emission Spectrochemical Analytical Curves
E406 Practice for Using Controlled Atmospheres in Spectrochemical Analysis
E691 Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method
E1257 Guide for Evaluating Grinding Materials Used for Surface Preparation in Spectrochemical Analysis
E1329 Practice for Verification and Use of Control Charts in Spectrochemical Analysis
E1601 Practice for Conducting an Interlaboratory Study to Evaluate the Performance of an Analytical Method
E2857 Guide for Validating Analytical Methods
E2972 Guide for Production, Testing, and Value Assignment of In-House Reference Materials for Metals, Ores, and Other Related Materials
ICS Code
ICS Number Code 77.120.40 (Nickel, chromium and their alloys)
UNSPSC Code
UNSPSC Code
Link Here | |||
Link to Active (This link will always route to the current Active version of the standard.) | |||
DOI: 10.1520/E3047-16
Citation Format
ASTM E3047-16, Standard Test Method for Analysis of Nickel Alloys by Spark Atomic Emission Spectrometry, ASTM International, West Conshohocken, PA, 2016, www.astm.org
Back to Top