If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass
    ASTM E2552 - 16

    Standard Guide for Assessing the Environmental and Human Health Impacts of New Compounds for Military Use

    Active Standard ASTM E2552 | Developed by Subcommittee: E50.47

    Book of Standards Volume: 11.06

      Format Pages Price  
    PDF 8 $54.00   ADD TO CART
    Hardcopy (shipping and handling) 8 $54.00   ADD TO CART
    Standard + Redline PDF Bundle 16 $64.00   ADD TO CART

    Significance and Use

    5.1 The purpose of this guide is to provide a logical, tiered approach in the development of environmental health criteria coincident with level and effort in the research, development, testing, and evaluation of new materials for military use. Various levels of uncertainty are associated with data collected from previous stages. Following the recommendation in the guide should reduce the relative uncertainty of the data collected at each developmental stage. At each stage, a general weight of evidence qualifier shall accompany each exposure/effect relationship. They may be simple (for example, low, medium, or high confidence) or sophisticated using a numerical value for each predictor as a multiplier to ascertain relative confidence in each step of risk characterization. The specific method used will depend on the stage of development, quantity and availability of data, variation in the measurement, and general knowledge of the dataset. Since specific formulations, conditions, and use scenarios are often not known until the later stages, exposure estimates can be determined only at advanced stages (for example, Engineering and Manufacturing Development; see 6.6). Exposure data can then be used with other toxicological data collected from previous stages in a quantitative risk assessment to determine the relative degree of hazard.

    5.2 Data developed from the use of this guide are designed to be consistent with criteria required in weapons and weapons system development (for example, programmatic environment, safety and occupational health evaluations, environmental assessments/environmental impact statements, toxicity clearances, and technical data sheets).

    5.3 Information shall be evaluated in a flexible manner consistent with the needs of the authorizing program. This requires proper characterization of the current problem. For example, compounds may be ranked relative to the environmental criteria of the prospective alternatives, the replacement compound, and within bounds of absolute environmental values. A weight of evidence (evaluation of uncertainty and variability) must also be considered with each criterion at each stage to allow for a proper assessment of the potential for adverse environmental or occupational effects; see 6.8.

    5.4 This standard approach requires environment, safety, and occupational health (ESOH) technical experts to determine the magnitude of the hazard and system engineers/researchers to evaluate the acceptability of the risk. Generally, the higher developmental stages require a higher managerial level of approval.

    1. Scope

    1.1 This guide is intended to determine the relative environmental influence of new substances, consistent with the research and development (R&D) level of effort and is intended to be applied in a logical, tiered manner that parallels both the available funding and the stage of research, development, testing, and evaluation. Specifically, conservative assumptions, relationships, and models are recommended early in the research stage, and as the technology is matured, empirical data will be developed and used. Munition constituents are included and may include fuels, oxidizers, explosives, binders, stabilizers, metals, dyes, and other compounds used in the formulation to produce a desired effect. Munition systems range from projectiles, grenades, rockets/missiles, training simulators, smokes and obscurants. Given the complexity of issues involved in the assessment of environmental fate and effects and the diversity of the systems used, this guide is broad in scope and not intended to address every factor that may be important in an environmental context. Rather, it is intended to reduce uncertainty at minimal cost by considering the most important factors related to human health and environmental impacts of energetic materials. This guide provides a method for collecting data useful in a relative ranking procedure to provide the systems scientist with a sound basis for prospectively determining a selection of candidates based on environmental and human health criteria. The general principles in this guide are applicable to other substances beyond energetics if intended to be used in a similar manner with similar exposure profiles.

    1.2 The scope of this guide includes:

    1.2.1 Energetic and other new/novel materials and compositions in all stages of research, development, test and evaluation.

    1.2.2 Environmental assessment, including: Human and ecological effects of the unexploded energetics and compositions on the environment. Environmental transport mechanisms of the unexploded energetics and composition. Degradation and bioaccumulation properties.

    1.2.3 Occupational health impacts from manufacture and use of the energetic substances and compositions to include load, assembly, and packing of the related munitions.

    1.3 Given the wide array of applications, the methods in this guide are not prescriptive. They are intended to provide flexible, general methods that can be used to evaluate factors important in determining environmental consequences from use of new substances in weapon systems and platforms.

    1.4 Factors that affect the health of humans as well as the environment are considered early in the development process. Since some of these data are valuable in determining health effects from generalized exposure, effects from occupational exposures are also included.

    1.5 This guide does not address all processes and factors important to the fate, transport, and potential for effects in every system. It is intended to be balanced effort between scientific and practical means to evaluate the relative environmental effects of munition compounds resulting from intended use. It is the responsibility of the user to assess data quality as well as sufficiently characterize the scope and magnitude of uncertainty associated with any application of this standard.

    1.6 Integration of disparate information and data streams developed from using the methods described in this guide is challenging and may not be straight-forward. Professional assistance from subject matter experts familiar in the field of toxicology and risk assessment is advised.

    1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    D5660 Test Method for Assessing the Microbial Detoxification of Chemically Contaminated Water and Soil Using a Toxicity Test with a Luminescent Marine Bacterium

    E729 Guide for Conducting Acute Toxicity Tests on Test Materials with Fishes, Macroinvertebrates, and Amphibians

    E857 Practice for Conducting Subacute Dietary Toxicity Tests with Avian Species

    E943 Terminology Relating to Biological Effects and Environmental Fate

    E1023 Guide for Assessing the Hazard of a Material to Aquatic Organisms and Their Uses

    E1147 Test Method for Partition Coefficient (N-Octanol/Water) Estimation by Liquid Chromatography

    E1148 Test Method for Measurements of Aqueous Solubility

    E1163 Test Method for Estimating Acute Oral Toxicity in Rats

    E1193 Guide for Conducting Daphnia magna Life-Cycle Toxicity Tests

    E1194 Test Method for Vapor Pressure

    E1195 Test Method for Determining a Sorption Constant (Koc) for an Organic Chemical in Soil and Sediments

    E1241 Guide for Conducting Early Life-Stage Toxicity Tests with Fishes

    E1279 Test Method for Biodegradation By a Shake-Flask Die-Away Method

    E1372 Test Method for Conducting a 90-Day Oral Toxicity Study in Rats

    E1415 Guide for Conducting Static Toxicity Tests With Lemna gibba G3

    E1525 Guide for Designing Biological Tests with Sediments

    E1624 Guide for Chemical Fate in Site-Specific Sediment/Water Microcosms

    E1676 Guide for Conducting Laboratory Soil Toxicity or Bioaccumulation Tests with the Lumbricid Earthworm Eisenia Fetida and the Enchytraeid Potworm Enchytraeus albidus

    E1689 Guide for Developing Conceptual Site Models for Contaminated Sites

    E1706 Test Method for Measuring the Toxicity of Sediment-Associated Contaminants with Freshwater Invertebrates

    ICS Code

    ICS Number Code 95.020 (Military engineering. Military affairs. Weapons)

    UNSPSC Code

    UNSPSC Code 77101500(Environmental impact assessment)

    Referencing This Standard
    Link Here
    Link to Active (This link will always route to the current Active version of the standard.)

    DOI: 10.1520/E2552-16

    Citation Format

    ASTM E2552-16, Standard Guide for Assessing the Environmental and Human Health Impacts of New Compounds for Military Use, ASTM International, West Conshohocken, PA, 2016, www.astm.org

    Back to Top