| Format | Pages | Price |   |
![]() |
6 | $52.00 | ![]() |
|
![]() |
Hardcopy (shipping and handling) | 6 | $52.00 | ![]() |
Historical Version(s) - view previous versions of standard
Work Item(s) - proposed revisions of this standard
More E10.05 Standards Related Products Standard References
Significance and Use
3.1 This guide describes approaches for using neutron fields with well known characteristics to perform calibrations of neutron sensors, to intercompare different methods of dosimetry, and to corroborate procedures used to derive neutron field information from measurements of neutron sensor response.
3.2 This guide discusses only selected standard and reference neutron fields which are appropriate for benchmark testing of light-water reactor dosimetry. The Standard Fields considered are neutron source environments that closely approximate the unscattered neutron spectra from 252Cf spontaneous fission and 235U thermal neutron induced fission. These standard fields were chosen for their spectral similarity to the high energy region (E > 2 MeV) of reactor spectra. The various categories of benchmark fields are defined in Terminology E170.
3.3 There are other well known neutron fields that have been designed to mockup special environments, such as pressure vessel mockups in which it is possible to make dosimetry measurements inside of the steel volume of the “vessel.” When such mockups are suitably characterized they are also referred to as benchmark fields. A variety of these engineering benchmark fields have been developed, or pressed into service, to improve the accuracy of neutron dosimetry measurement techniques. These special benchmark experiments are discussed in Guide E2006, and in Refs (1)4 and (2).
1. Scope
1.1 This guide covers facilities and procedures for benchmarking neutron measurements and calculations. Particular sections of the guide discuss: the use of well-characterized benchmark neutron fields to calibrate integral neutron sensors; the use of certified-neutron-fluence standards to calibrate radiometric counting equipment or to determine interlaboratory measurement consistency; development of special benchmark fields to test neutron transport calculations; use of well-known fission spectra to benchmark spectrum-averaged cross sections; and the use of benchmarked data and calculations to determine the uncertainties in derived neutron dosimetry results.
1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.
ASTM Standards
E170 Terminology Relating to Radiation Measurements and Dosimetry
E261 Practice for Determining Neutron Fluence, Fluence Rate, and Spectra by Radioactivation Techniques
E263 Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Iron
E264 Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Nickel
E265 Test Method for Measuring Reaction Rates and Fast-Neutron Fluences by Radioactivation of Sulfur-32
E266 Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Aluminum
E343 Test Method for Measuring Reaction Rates by Analysis of Molybdenum-99 Radioactivity From Fission Dosimeters
E393 Test Method for Measuring Reaction Rates by Analysis of Barium-140 From Fission Dosimeters
E482 Guide for Application of Neutron Transport Methods for Reactor Vessel Surveillance, E706 (IID)
E523 Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Copper
E526 Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Titanium
E704 Test Method for Measuring Reaction Rates by Radioactivation of Uranium-238
E705 Test Method for Measuring Reaction Rates by Radioactivation of Neptunium-237
E854 Test Method for Application and Analysis of Solid State Track Recorder (SSTR) Monitors for Reactor Surveillance, E706(IIIB)
E910 Test Method for Application and Analysis of Helium Accumulation Fluence Monitors for Reactor Vessel Surveillance, E706 (IIIC)
E1297 Test Method for Measuring Fast-Neutron Reaction Rates by Radioactivation of Niobium
E2006 Guide for Benchmark Testing of Light Water Reactor Calculations
ICS Code
ICS Number Code 27.120.10 (Reactor engineering)
UNSPSC Code
UNSPSC Code 26141700(Dosimetry equipment)
Link Here | |||
Link to Active (This link will always route to the current Active version of the standard.) | |||
DOI: 10.1520/E2005-10R15
Citation Format
ASTM E2005-10(2015), Standard Guide for Benchmark Testing of Reactor Dosimetry in Standard and Reference Neutron Fields, ASTM International, West Conshohocken, PA, 2015, www.astm.org
Back to Top