Standard Active Last Updated: Apr 02, 2020 Track Document
ASTM E1688-19

Standard Guide for Determination of the Bioaccumulation of Sediment-Associated Contaminants by Benthic Invertebrates

Standard Guide for Determination of the Bioaccumulation of Sediment-Associated Contaminants by Benthic Invertebrates E1688-19 ASTM|E1688-19|en-US Standard Guide for Determination of the Bioaccumulation of Sediment-Associated Contaminants by Benthic Invertebrates Standard new BOS Vol. 11.06 Committee E50
$ 105.00 In stock

Significance and Use

5.1 Sediment exposure evaluations are a critical component for both ecological and human health risk assessments. Credible, cost-effective methods are required to determine the rate and extent of bioaccumulation given the potential importance of bioaccumulation by benthic organisms. Standardized test methods to assess the bioavailability of sediment-associated contaminants are required to assist in the development of sediment quality guidelines (1, 2, 3)5 and to assess the potential impacts of disposal of dredge materials (4).

5.2 The extent to which sediment-associated contaminants are biologically available and bioaccumulated is important in order to assess their direct effects on sediment-dwelling organisms and assess their transport to higher trophic levels. Controlled studies are required to determine the potential for bioaccumulation that can be interpreted and modeled for predicting the impact of accumulated chemicals. The data collected by these methods should be correlated with the current understanding of toxicity or human health risks to augment the hazard interpretation for contaminated sediments.

Scope

1.1 This guide covers procedures for measuring the bioaccumulation of sediment-associated contaminants by infaunal invertebrates. Marine, estuarine, and freshwater sediments are a major sink for chemicals that sorb preferentially to particles, such as organic compounds with high octanol-water-partitioning coefficients (Kow) (for example, polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDT)) and many metals. The accumulation of chemicals into whole or bedded sediments (that is, consolidated rather than suspended sediments) reduces their direct bioavailability to pelagic organisms but increases the exposure of benthic organisms. Feeding of pelagic organisms on benthic prey can reintroduce sediment-associated contaminants into pelagic food webs. The bioaccumulation of sediment-associated contaminants by sediment-dwelling organisms can therefore result in ecological impacts on benthic and pelagic communities and human health from the consumption of contaminated shellfish or pelagic fish.

1.2 Methods of measuring bioaccumulation by infaunal organisms from marine, estuarine, and freshwater sediments containing organic or metal contaminates will be discussed. The procedures are designed to generate quantitative estimates of steady-state tissue residues because data from bioaccumulation tests are often used in ecological or human health risk assessments. Eighty percent of steady-state is used as the general criterion. Because the results from a single or few species are often extrapolated to other species, the procedures are designed to maximize exposure to sediment-associated contaminants so that residues in untested species are not underestimated systematically. A 28-day exposure with sediment-ingesting invertebrates and no supplemental food is recommended as the standard single sampling procedure. Procedures for long-term and kinetic tests are provided for use when 80 % of steady-state will not be obtained within 28 days or when more precise estimates of steady-state tissue residues are required. The procedures are adaptable to shorter exposures and different feeding types. Exposures shorter than 28 days may be used to identify which compounds are bioavailable (that is, bioaccumulation potential) or for testing species that do not live for 28 days in the sediment (for example, certain Chironomus). Non-sediment-ingestors or species requiring supplementary food may be used if the goal is to determine uptake in these particular species because of their importance in ecological or human health risk assessments. However, the results from such species should not be extrapolated to other species.

1.3 Standard test methods are still under development, and much of this guide is based on techniques used in successful studies and expert opinion rather than experimental comparisons of different techniques. Also, relatively few marine/estuarine (for example, Nereis and Macoma), freshwater (for example, Diporeia and Lumbriculus variegatus) species, and primarily neutral organic compounds provide a substantial portion of the basis for the guide. Nonetheless, sufficient progress has been made in conducting experiments and understanding the factors regulating sediment bioavailability to establish general guidelines for sediment bioaccumulation tests.

1.4 This guide is arranged as follows:

 

Scope

1

 

Referenced Documents

2

 

Terminology

3

 

Summary of Guide

4

 

Significance and Use

5

 

Interferences

6

 

Apparatus

7

 

Safety Precautions

8

 

Overlying Water

9

 

Sediment

10

 

Test Organisms

11

 

Experimental Design

12

 

Procedure

13

 

Analytical Methodology

14

 

Data Analysis and Interpretation

15

 

Keywords

 

 

Annexes

 

 

Additional Methods for Predicting Bioaccumulation

Annex A1

 

Determining the Number of Replicates

Annex A2

 

Adequacy of 10-Day and 28-Day Exposures

Annex A3

 

Alternative Test Designs

Annex A4

 

Calculation of Time to Steady-State

Annex A5

 

Special Purpose Exposure Chambers

Annex A6

 

Additional Techniques to Correct for Gut Sediment

Annex A7

 

Guidance For Conducting Sediment Bioaccumulation Tests with the Oligochaete Lumbriculus Variegatus

Annex A8

 

References

 

1.5 Field-collected sediments may contain toxic materials, including pathogens, and should be treated with caution to minimize exposure to workers. Worker safety must also be considered when using laboratory-dosed sediments containing toxic compounds.

1.6 This guide may involve the use of non-indigenous test species. The accidental establishment of non-indigenous species has resulted in substantial harm to both estuarine and freshwater ecosystems. Adequate precautions must therefore be taken against the accidental release of any non-indigenous test species or associated flora or fauna.

1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8.

1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

Price:
Contact Sales
Related
Reprints and Permissions
Reprints and copyright permissions can be requested through the
Copyright Clearance Center
Details
Book of Standards Volume: 11.06
Developed by Subcommittee: E50.47
Pages: 65
DOI: 10.1520/E1688-19
ICS Code: 13.080.30