If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass
    ASTM E1226 - 19

    Standard Test Method for Explosibility of Dust Clouds

    Active Standard ASTM E1226 | Developed by Subcommittee: E27.05

    Book of Standards Volume: 14.05

      Format Pages Price  
    PDF 15 $58.00   ADD TO CART
    Hardcopy (shipping and handling) 15 $58.00   ADD TO CART
    Standard + Redline PDF Bundle 30 $69.00   ADD TO CART

    Significance and Use

    5.1 This test method provides a procedure for performing laboratory tests to evaluate deflagration parameters of dusts.

    5.2 The data developed by this test method may be used for the purpose of sizing deflagration vents in conjunction with the nomographs and equations published in NFPA 68, ISO 6184/1, or VDI 3673.

    5.3 The values obtained by this testing technique are specific to the sample tested and the method used and are not to be considered intrinsic material constants.

    5.4 For dusts with low KSt values, discrepancies have been observed between tests in 20-L and 1-m3 chambers. A strong ignitor may overdrive a 20-L chamber, as discussed in Test Method E1515 and Refs (1-4).8 Conversely, more recent testing has shown that some metal dusts can be prone to underdriving in the 20-L chamber, exhibiting significantly lower KSt values than in a 1-m3 chamber (5). Ref (6) provides supporting calculations showing that a test vessel of at least 1-m3 of volume is necessary to obtain the maximum explosibility index for a burning dust cloud having an abnormally high flame temperature. In these two overdriving and underdriving scenarios described above, it is therefore recommended to perform tests in 1-m3 or larger calibrated test vessels in order to measure dusts explosibility parameters accurately.

    Note 5: Ref (2) concluded that dusts with KSt values below 45 bar m/s when measured in a 20-L chamber with a 10 000-J ignitor, may not be explosible when tested in a 1-m3 chamber with a 10 000-J ignitor. Ref (2) and unpublished testing has also shown that in some cases the KSt values measured in the 20-L chamber can be lower than those measured in the 1-m3 chamber. Refs (1) and (3) found that for some dusts, it was necessary to use lower ignition energy in the 20-L chamber in order to match MEC or MIC test data in a 1-m3 chamber. If a dust has measurable (nonzero) Pmax and KSt values with a 5000 or 10 000-J ignitor when tested in a 20-L chamber but no measurable Pmax and KSt values with tests conducted using an ignition source less than or equal to 2500 J, it may be helpful to test the material in a larger chamber such as a 1-m3 chamber using at least a 10 000-J ignition source to further characterize the material’s explosibility in dust cloud form.

    1. Scope

    1.1 Purpose. The purpose of this test method is to provide standard test methods for characterizing the “explosibility” of dust clouds in two ways, first by determining if a dust is “explosible,” meaning a cloud of dust dispersed in air is capable of propagating a deflagration, which could cause a flash fire or explosion; or, if explosible, determining the degree of “explosibility,” meaning the potential explosion hazard of a dust cloud as characterized by the dust explosibility parameters, maximum explosion pressure, Pmax; maximum rate of pressure rise, (dP/dt)max; and explosibility index, KSt.

    1.2 Limitations. Results obtained by the application of the methods of this standard pertain only to certain combustion characteristics of dispersed dust clouds. No inference should be drawn from such results relating to the combustion characteristics of dusts in other forms or conditions (for example, ignition temperature or spark ignition energy of dust clouds, ignition properties of dust layers on hot surfaces, ignition of bulk dust in heated environments, etc.)

    1.3 Use. It is intended that results obtained by application of this test be used as elements of a dust hazard analysis (DHA) that takes into account other pertinent risk factors; and in the specification of explosion prevention systems (see, for example NFPA 68, NFPA 69, and NFPA 652) when used in conjunction with approved or recognized design methods by those skilled in the art.

    Note 1: Historically, the evaluation of the deflagration parameters of maximum pressure and maximum rate of pressure rise has been performed using a 1.2-L Hartmann Apparatus. Test Method E789, which describes this method, has been withdrawn. The use of data obtained from the test method in the design of explosion protection systems is not recommended.

    1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

    1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

    1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    D3173 Test Method for Moisture in the Analysis Sample of Coal and Coke

    D3175 Test Method for Volatile Matter in the Analysis Sample of Coal and Coke

    E789 Test Method for Dust Explosions in a 1.2-Litre Closed Cylindrical Vessel

    E1445 Terminology Relating to Hazard Potential of Chemicals

    E1515 Test Method for Minimum Explosible Concentration of Combustible Dusts

    ICS Code

    ICS Number Code 13.230 (Explosion protection); 17.100 (Measurement of force, weight and pressure)

    Referencing This Standard
    Link Here
    Link to Active (This link will always route to the current Active version of the standard.)

    DOI: 10.1520/E1226-19

    Citation Format

    ASTM E1226-19, Standard Test Method for Explosibility of Dust Clouds, ASTM International, West Conshohocken, PA, 2019, www.astm.org

    Back to Top