If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass
    ASTM D7919 - 14(2017)

    Standard Guide for Filter Debris Analysis (FDA) Using Manual or Automated Processes

    Active Standard ASTM D7919 | Developed by Subcommittee: D02.96.06

    Book of Standards Volume: 05.04

      Format Pages Price  
    PDF 5 $54.00   ADD TO CART
    Hardcopy (shipping and handling) 5 $54.00   ADD TO CART

    Significance and Use

    5.1 This guide is intended to provide machinery maintenance and monitoring personnel with a guideline for performing filter debris analysis as a means to determine machine condition. Correlating the filter contaminants to ‘normal’ and ‘abnormal’ lube system operation provides early indication of a contaminant or component wear related lube system problem. Analysis of the contaminant collected within the lube filter element provides a tool to identify the failure mode, its rate of progression, and the source of the contamination.

    5.2 FDA differs from traditional oil analysis in that the filter is sampled instead of the fluid. Debris from the filter is removed for analysis. FDA is an effective means of monitoring equipment wear because the wear history is efficiently captured in the filter matrix. Typically, more than 95 % of all released metal particles larger than the filter pore size are captured in the filter (1).5 In addition, other types of particulate contamination, including seal wear material and environmental contaminations are captured, which can also provide diagnostic information.

    1. Scope

    1.1 This guide pertains to removal and analysis techniques to extract debris captured by in-service lubricant and hydraulic filters and to analyze the debris removed.

    1.2 This guide suggests techniques to remove, collect and analyze debris from filters in support of machinery health condition monitoring.

    1.3 Debris removal techniques range from manual to automated.

    1.4 Analysis techniques vary from visual, particle counting, microscopic, x-ray fluorescence (XRF), atomic emission spectroscopy (AES), and scanning electron microscopy energy dispersive x-rays (SEMEDX).

    1.5 This guide is suitable for use with the following filter types: screw on, metal mesh, and removable diagnostic layer filters.

    1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

    1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    D5185 Test Method for Multielement Determination of Used and Unused Lubricating Oils and Base Oils by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES)

    D6595 Test Method for Determination of Wear Metals and Contaminants in Used Lubricating Oils or Used Hydraulic Fluids by Rotating Disc Electrode Atomic Emission Spectrometry

    D7669 Guide for Practical Lubricant Condition Data Trend Analysis

    D7684 Guide for Microscopic Characterization of Particles from In-Service Lubricants

    D7685 Practice for In-Line, Full Flow, Inductive Sensor for Ferromagnetic and Non-ferromagnetic Wear Debris Determination and Diagnostics for Aero-Derivative and Aircraft Gas Turbine Engine Bearings

    D7690 Practice for Microscopic Characterization of Particles from In-Service Lubricants by Analytical Ferrography

    D7720 Guide for Statistically Evaluating Measurand Alarm Limits when Using Oil Analysis to Monitor Equipment and Oil for Fitness and Contamination

    D7898 Practice for Lubrication and Hydraulic Filter Debris Analysis (FDA) for Condition Monitoring of Machinery

    Other Documents

    TTCP-AER-TP3-TR01-2010 Filter Debris Analysis Guide, July 2010, published by The Technical Cooperation Program (TTCP) Available from Technical Cooperation Program (TTCP), http://www.acq.osd.mil/ttcp/index.html.

    ICS Code

    ICS Number Code 23.100.60 (Filters, seals and contamination of fluids)

    UNSPSC Code

    UNSPSC Code 15121500(Lubricating preparations); 40161504(Oil filters)

    Referencing This Standard
    Link Here
    Link to Active (This link will always route to the current Active version of the standard.)

    DOI: 10.1520/D7919-14R17

    Citation Format

    ASTM D7919-14(2017), Standard Guide for Filter Debris Analysis (FDA) Using Manual or Automated Processes, ASTM International, West Conshohocken, PA, 2017, www.astm.org

    Back to Top