ASTM D6913 / D6913M - 17

    Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis

    Active Standard ASTM D6913 / D6913M | Developed by Subcommittee: D18.03

    Book of Standards Volume: 04.09


      Format Pages Price  
    PDF 34 $65.00   ADD TO CART
    Hardcopy (shipping and handling) 34 $65.00   ADD TO CART
    Standard + Redline PDF Bundle 68 $78.00   ADD TO CART



    Significance and Use

    5.1 The gradation of the soil is used for classification in accordance with Practice D2487.

    5.2 The gradation (particle-size distribution) curve is used to calculate the coefficient of uniformity and the coefficient of curvature.

    5.3 Selection and acceptance of fill materials are often based on gradation. For example, highway embankments, backfills, and earthen dams may have gradation requirements.

    5.4 The gradation of the soil often controls the design and quality control of drainage filters, and groundwater drainage.

    5.5 Selection of options for dynamic compaction and grouting is related to gradation of the soil.

    5.6 The gradation of a soil is an indicator of engineering properties. Hydraulic conductivity, compressibility, and shear strength are related to the gradation of the soil. However, engineering behavior is dependent upon many factors (such as effective stress, stress history, mineral type, structure, plasticity, and geologic origins) and cannot be based solely upon gradation.

    Note 1: The quality of the result produced by these test methods is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of these test methods are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.

    1. Scope

    1.1 Soils consist of particles with various shapes and sizes. This test method is used to separate particles into size ranges and to determine quantitatively the mass of particles in each range. These data are combined to determine the particle-size distribution (gradation). This test method uses a square opening sieve criterion in determining the gradation of soil between the 3-in. (75-mm) and No. 200 (75-µm) sieves.

    1.2 The terms, soils and material, are used interchangeably throughout the standard.

    1.3 In cases where the gradation of particles larger than 3 in. (75 mm) sieve is needed, Test Method D5519 may be used.

    1.4 In cases where the gradation of particles smaller than No. 200 (75-µm) sieve is needed, Test Method D7928 may be used.

    1.5 Typically, if the maximum particle size is equal to or less than 4.75 mm (No. 4 sieve), then single-set sieving is applicable. Furthermore, if the maximum particle size is greater than 4.75 mm (No. 4 sieve) and equal to or less than 9.5 mm (3/8-in sieve), then either single-set sieving or composite sieving is applicable. Finally, if the maximum particle size is equal to or greater than 19.0 mm (3/4-in sieve), composite sieving is applicable. For special conditions see 10.3.

    1.6 Two test methods are provided in this standard. The methods differ in the significant digits recorded and the size of the specimen (mass) required. The method to be used may be specified by the requesting authority; otherwise Method A shall be performed.

    1.6.1 Method A—The percentage (by mass) passing each sieve size is recorded to the nearest 1 %. This method must be used when performing composite sieving. For cases of disputes, Method A is the referee method.

    1.6.2 Method B—The percentage (by mass) passing each sieve size is recorded to the nearest 0.1 %. This method is only applicable for single sieve-set sieving and when the maximum particle size is equal to or less than the No. 4 (4.75-mm) sieve.

    1.7 This test method does not cover, in any detail, procurement of the sample. It is assumed that the sample is obtained using appropriate methods and is representative.

    1.8 Sample Processing—Three procedures (moist, air dry, and oven dry) are provided to process the sample to obtain a specimen. The procedure selected will depend on the type of sample, the maximum particle-size in the sample, the range of particle sizes, the initial conditions of the material, the plasticity of the material, the efficiency, and the need for other testing on the sample. The procedure may be specified by the requesting authority; otherwise the guidance given in Section 10 shall be followed.

    1.9 This test method typically requires two or three days to complete, depending on the type and size of the sample and soil type.

    1.10 This test method is not applicable for the following soils:

    1.10.1 Soils containing fibrous peat that will change in particle size during the drying, washing, or sieving procedure.

    1.10.2 Soils containing extraneous matter, such as organic solvents, oil, asphalt, wood fragments, or similar items. Such extraneous matter can affect the washing and sieving procedures.

    1.10.3 Materials that contain cementitious components, such as cement, fly ash, lime, or other stabilization admixtures.

    1.11 This test method may not produce consistent test results within and between laboratories for the following soils and the precision statement does not apply to them.

    1.11.1 Friable soils in which the sieving processes change the gradation of the soil. Typical examples of these soils are some residual soils, most weathered shales and some weakly cemented soils such as hardpan, caliche or coquina.

    1.11.2 Soils that will not readily disperse such as glauconitic clays or some dried plastic clays.

    1.11.3 To test these soils, this test method must be adapted, or altered, and these alterations documented. Depending on the design considerations, a specialized gradation-testing program could be performed. The alterations could require the washing and sieving procedures to be standardized such that each specimen would be processed in a similar manner.

    1.12 Some materials that are not soils, but are made up of particles may be tested using this method. However, the applicable sections above should be used in applying this standard.

    1.13 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this test method.

    1.13.1 The procedures used to specify how data are collected/recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user's objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering design.

    1.14 Units—The dimensional values stated in either SI units or inch-pound units are to be regarded as standard, such as 200-mm or 8-in. diameter sieve. Except, the sieve designations are typically identified using the “alternative” system in accordance with Practice E11, such as 3 in. and No. 200, instead of the “standard” system of 75 mm and 75 µm, respectively. Only the SI units are used for mass determinations, calculations, and reported results. However, the use of balances or scales recording pounds of mass (lbm) shall not be regarded as nonconformance with this standard.

    1.15 A summary of the symbols used in this test method is given in Annex A1.

    1.16 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

    1.17 Table of Contents—All tables and figures appear at the end of this standard.

     

    Section

    Scope

    1

     Method A

    1.6.1

     Method B

    1.6.2

     Sample Processing

    1.8

     Units

    1.14

    Referenced Documents

    2

     ASTM Standards

    2.1

    Terminology

    3

     General

    3.1

     Definitions

    3.2

     Definitions of Terms Specific to This Standard

    3.3

    Summary of Test Method

    4

    Significance and Use

    5

    Apparatus

    6

     Sieves

    6.1

      Standard Sieve Set

    6.1.1

      Washing Sieve, No. 200 (75-μm)

    6.1.2

      Designated Separating Sieve

    6.1.3

     Washing Sink with Spray Nozzle

    6.2

     Mechanical Sieve Shaker

    6.3

     Balances

    6.4

     Drying Oven

    6.5

     Sieving Containers

    6.6

      Specimen Containers

    6.6.1

      Collection/Transfer Device

    6.6.2

      Cumulative Mass Container

    6.6.3

     Sieve Brushes

    6.7

     Miscellaneous Items

    6.8

     Splitter or Riffle Box (optional)

    6.9

     Quartering Accessories (optional)

    6.10

     Mortar and Rubber-Covered Pestle (optional)

    6.11

     Low Temperature Drying Oven (optional)

    6.12

     Ultrasonic Water Bath (optional)

    6.13

     Dispersion Shaker (optional)

    6.14

    Reagents

    7

     Sodium Hexametaphosphate

    7.1

      Dry Addition

    7.1.1.1

      Solution

    7.1.1.2

    Preparation of Apparatus

    8

     Verification of Sieves

    8.1

      Verification Interval

    8.1.1

     Verification of Mechanical Sieve Shaker and
     Standard Shaking Period

    8.2

      Large Mechanical Sieve Shaker

    8.2.1

      Verification Interval

    8.2.2

      Hand Sieve Shaking Procedure

    8.2.3

    Sampling

    9

     General

    9.1

     Sample Sources

    9.2

      Bulk Samples

    9.2.1

      Jar and Small Bag Samples

    9.2.2

      Intact Tube Samples

    9.2.3

      Samples from Prior Testing

    9.2.4

    Specimen

    10

     General

    10.1

     Minimum Mass Requirement

    10.2

     Selection of Sieving Procedure

    10.3

      Single Sieve-Set Sieving

    10.3.1

      Composite Sieving

    10.3.2

     Specimen Procurement

    10.4

      Moist Procedure

    10.4.1

      Air-Dried Procedure

    10.4.2

      Oven-Dried Procedure

    10.4.3

      Discussion on Segregating Soils

    10.4.4

     Specimen Procurement and Processing Requirements

    10.5

      Moist Procedure, Single Sieve-Set Sieving

    10.5.1

      Moist Procedure, Composite Sieving

    10.5.2

       Coarse Portion Acceptable Loss (CPL)

    10.5.2.3

      Air-Dried Procedure, General

    10.5.3

      Air-Dried Procedure, Single Sieve-Set Sieving

    10.5.4

      Air-Dried Procedure, Composite Sieving

    10.5.5

      Oven-Dried Procedure, General

    10.5.6

      Oven-Dried Procedure, Single Sieve-Set Sieving

    10.5.7

      Oven-Dried Procedure, Composite Sieving

    10.5.8

    Procedure (Sieving)

    11

     General

    11.1

     Mass Measurements

    11.2

     Sieve Overloading

    11.3

     Single Sieve-Set Sieving

    11.4

      Specimen Mass

    11.4.1

      Specimen Dispersion

    11.4.2

       Soaking without a Dispersant

    11.4.2.1

       Soaking with a Dispersant

    11.4.2.2

       Using an Ultrasonic Water Bath

    11.4.2.3

      Washing Specimen

    11.4.3

       General Precautions

    11.4.3.1

       Transfer Specimen

    11.4.3.2

       Washing

    11.4.3.3

       Transfer Washed Specimen

    11.4.3.4

      Dry Sieving

    11.4.4

       Sieve Set

    11.4.4.1

       Mechanical Shaking

    11.4.4.2

      Cumulative Material/Mass Retained

    11.4.5

       First Sieve

    11.4.5.1

       Remaining Sieves

    11.4.5.2

     Composite Sieving, Single Separation

    11.5

      Coarser Portion

    11.5.1

       Dispersing and Washing

    11.5.1.1

       Dry Sieving Coarser Portion

    11.5.1.3

      Subspecimen from Finer Portion

    11.5.2

       Dispersing and Washing Subspecimen

    11.5.2.1

       Dry Sieving Subspecimen

    11.5.2.2

     Composite Sieving, Double Separation

    11.6

      Separating 1st Subspecimen

    11.6.1

      Dispersing and Washing 2nd Coarser Portion

    11.6.2

      Dry Sieving 2nd Coarser Portion

    11.6.3

      2nd Subspecimen

    11.6.4

       Dispersing and Washing 2nd Subspecimen

    11.6.4.1

       Dry Sieving 2nd Subspecimen

    11.6.4.2

    Calculations

    12

     General

    12.1

     Sieve Overloading

    12.2

     Single Sieve-Set Sieving, Percent Passing

    12.3

     Composite Sieving, Mass of Specimen

    12.4

     Composite Sieving, Single Separation

    12.5

      Composite Sieving, Coarser Portion (CP)

    12.5.1

       CP, Percent Passing

    12.5.1.1

       CP, Composite Sieving Correction
        Factor (CSCF)

    12.5.1.2

       CP, Acceptable Loss During Washing
        and Sieving

    12.5.1.3

       Composite Sieving, Subspecimen (finer
        portion)

    12.5.2

       Percent Passing, Specimen (combined
        coarser and finer portions)

    12.5.2.1

       Subspecimen, Acceptable Fractional
        Percent Retained

    12.5.2.2

       Percent Passing, Acceptance Criterion

    12.5.2.3

       Finer Portion, Percent Passing (optional)

    12.5.3

     Composite Sieving, Double Separation

    12.6

      1st Coarser Portion

    12.6.1

      1st Subspecimen

    12.6.2

       Percent Passing, 2nd Coarser Portion

    12.6.2.1

       2nd Coarser Portion, Composite Sieving
        Correction Factor (2ndCSCF)

    12.6.2.2

       2nd Coarser Portion, Acceptable Loss on
        Sieving and Washing

    12.6.2.3

       2nd Coarser Portion, Acceptable Fractional
        Percent Retained

    12.6.2.4

       Percent Passing, Acceptance Criterion

    12.6.2.5

      2nd Subspecimen

    12.6.3

       Percent Passing, 2nd Subspecimen

    12.6.3.1

       2nd Subspecimen, Acceptable Fractional
         Percent Retained

    12.6.3.2

       Percent Passing, Acceptance Criterion

    12.6.3.3

      1st Finer Portion, Percent Passing (optional)

    12.6.4

       2nd Finer Portion, Composite Sieving
        Correction Factor (optional)

    12.6.4.1

       2nd Finer Portion, Percent Passing for
        2nd Subspecimen (optional)

    12.6.4.2

    Report: Test Data Sheet(s)/Form(s)

    13

    Precision and Bias

    14

     Precision

    14.1

      Precision Data Analysis

    14.1.1

      Calculation of Precision

    14.1.2

       Acceptance Criterion

    14.1.2.4

      Triplicate Test Precision Data (TTPD)

    14.1.3

       TTPD-Method A Repeatability

    14.1.3.1

       TTPD-Method A Reproducibility

    14.1.3.2

       TTPD-Method B Repeatability

    14.1.3.3

       TTPD-Method B Reproducibility

    14.1.3.4

      Single Test Precision Data (STPD)

    14.1.4

       STPD-Method A Reproducibility

    14.1.4.1

       STPD-Method B Reproducibility

    14.1.4.2

      Soils Type

    14.1.5

      Discussion on Precision

    14.1.6

     Bias

    14.2

    Keywords

    15

    ANNEXES

     

    Symbols

    Annex A1

    Sample to Specimen Splitting/Reduction Methods

    Annex A2

     General

    A2.1

      Mechanical Splitting

    A2.1.1

      Quartering

    A2.1.2

      Miniature Stockpile Sampling

    A2.1.3

     Sample Processing Recommendation Based
      on Soil Type

    A2.2

      Clean Gravel (GW, GP) and Clean Sand
       (SW, SP)

    A2.2.1

      Gravel with Fines (GM, GC, GC-GM,
       GW-GM, GP-GM, GP-GC)

    A2.2.2

      Sand with Silt Fines (SW-SM, SP-SM,
       SM)

    A2.2.3

      Sand with Clay and Silt Fines or Clay
       Fines (SW-SC, SP-SC, SC, SC-SM)

    A2.2.4

      Silts with Sand or Gravel, or Both (ML,
       MH)

    A2.2.5

      Organic Soils with Sand or Gravel, or
       Both (OL, OH)

    A2.2.6

    APPENDIXES

     

    Example Test Data Sheets/Forms

    Appendix X1

     General

    X1.1

    Precision: Example Calculations

    Appendix X2

     General

    X2.1

    TABLES and FIGURES

     

    1.18 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    C136 Test Method for Sieve Analysis of Fine and Coarse Aggregates

    C702 Practice for Reducing Samples of Aggregate to Testing Size

    D653 Terminology Relating to Soil, Rock, and Contained Fluids

    D698 Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3))

    D1140 Test Methods for Determining the Amount of Material Finer than 75-m (No. 200) Sieve in Soils by Washing

    D1557 Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3))

    D2216 Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

    D2487 Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System)

    D2488 Practice for Description and Identification of Soils (Visual-Manual Procedure)

    D3740 Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction

    D4220/D4220M Practices for Preserving and Transporting Soil Samples

    D4318 Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils

    D4753 Guide for Evaluating, Selecting, and Specifying Balances and Standard Masses for Use in Soil, Rock, and Construction Materials Testing

    D5519 Test Methods for Particle Size Analysis of Natural and Man-Made Riprap Materials

    D6026 Practice for Using Significant Digits in Geotechnical Data

    D7928 Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis

    E11 Specification for Woven Wire Test Sieve Cloth and Test Sieves

    E177 Practice for Use of the Terms Precision and Bias in ASTM Test Methods

    E691 Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method


    ICS Code

    ICS Number Code 13.080.20 (Physical properties of soil)

    UNSPSC Code

    UNSPSC Code


    Referencing This Standard
    Link Here
    Link to Active (This link will always route to the current Active version of the standard.)

    DOI: 10.1520/D6913_D6913M-17

    Citation Format

    ASTM D6913 / D6913M-17, Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis, ASTM International, West Conshohocken, PA, 2017, www.astm.org

    Back to Top