If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass
    ASTM D5739 - 06(2020)

    Standard Practice for Oil Spill Source Identification by Gas Chromatography and Positive Ion Electron Impact Low Resolution Mass Spectrometry

    Active Standard ASTM D5739 | Developed by Subcommittee: D19.06

    Book of Standards Volume: 11.02

      Format Pages Price  
    PDF 12 $60.00   ADD TO CART
    Hardcopy (shipping and handling) 12 $60.00   ADD TO CART

    Significance and Use

    4.1 This practice is useful for assessing the source for an oil spill. Other less complex analytical procedures (Test Methods D3328, D3414, D3650, and D5037) may provide all of the necessary information for ascertaining an oil spill source; however, the use of a more complex analytical strategy may be necessary in certain difficult cases, particularly for significantly weathered oils. This practice provides the user with a means to this end.

    4.1.1 This practice presumes that a “screening” of possible suspect sources has already occurred using less intensive techniques. As a result, this practice focuses directly on the generation of data using preselected targeted compound classes. These targets are both petrogenic and pyrogenic and can constitute both major and minor fractions of petroleum oils; they were chosen in order to develop a practice that is universally applicable to petroleum oil identification in general and is also easy to handle and apply. This practice can accommodate light oils and cracked products (exclusive of gasoline) on the one hand, as well as residual oils on the other.

    4.1.2 This practice provides analytical characterizations of petroleum oils for comparison purposes. Certain classes of source-specific chemical compounds are targeted in this qualitative comparison; these target compounds are both unique descriptors of an oil and chemically resistant to environmental degradation. Spilled oil can be assessed in this way as being similar or different from potential source samples by the direct visual comparison of specific extracted ion chromatograms (EICs). In addition, other, more weathering-sensitive chemical compound classes can also be examined in order to crudely assess the degree of weathering undergone by an oil spill sample.

    4.2 This practice simply provides a means of making qualitative comparisons between petroleum samples; quantitation of the various chemical components is not addressed.

    1. Scope

    1.1 This practice covers the use of gas chromatography and mass spectrometry to analyze and compare petroleum oil spills and suspected sources.

    1.2 The probable source for a spill can be ascertained by the examination of certain unique compound classes that also demonstrate the most weathering stability. To a greater or lesser degree, certain chemical classes can be anticipated to chemically alter in proportion to the weathering exposure time and severity, and subsequent analytical changes can be predicted. This practice recommends various classes to be analyzed and also provides a guide to expected weathering-induced analytical changes.

    1.3 This practice is applicable for moderately to severely degraded petroleum oils in the distillate range from diesel through Bunker C; it is also applicable for all crude oils with comparable distillation ranges. This practice may have limited applicability for some kerosenes, but it is not useful for gasolines.

    1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

    1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

    1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    D1129 Terminology Relating to Water

    D3325 Practice for Preservation of Waterborne Oil Samples

    D3326 Practice for Preparation of Samples for Identification of Waterborne Oils

    D3328 Test Methods for Comparison of Waterborne Petroleum Oils by Gas Chromatography

    D3414 Test Method for Comparison of Waterborne Petroleum Oils by Infrared Spectroscopy

    D3415 Practice for Identification of Waterborne Oils

    D3650 Test Method for Comparison of Waterborne Petroleum Oils By Fluorescence Analysis

    D5037 Test Method for Comparison of Waterborne Petroleum Oils by High Performance Liquid Chromatography

    E355 Practice for Gas Chromatography Terms and Relationships

    ICS Code

    ICS Number Code 71.040.50 (Physicochemical methods of analysis)

    Referencing This Standard
    Link Here
    Link to Active (This link will always route to the current Active version of the standard.)

    DOI: 10.1520/D5739-06R20

    Citation Format

    ASTM D5739-06(2020), Standard Practice for Oil Spill Source Identification by Gas Chromatography and Positive Ion Electron Impact Low Resolution Mass Spectrometry, ASTM International, West Conshohocken, PA, 2020, www.astm.org

    Back to Top