ASTM D4959 - 16

    Standard Test Method for Determination of Water Content of Soil By Direct Heating

    Active Standard ASTM D4959 | Developed by Subcommittee: D18.08

    Book of Standards Volume: 04.08


      Format Pages Price  
    PDF 6 $45.00   ADD TO CART
    Hardcopy (shipping and handling) 6 $45.00   ADD TO CART
    Standard + Redline PDF Bundle 12 $54.00   ADD TO CART


    Significance and Use

    5.1 The water content of a soil is used throughout geotechnical engineering practice both in the laboratory and in the field. The use of Test Methods D2216 for water content determination can be time consuming and there are occasions when a more expedient method is desirable. Drying by direct heating is one such method. Results of this test method have been demonstrated to be of satisfactory accuracy for use in field control work, such as in the determination of water content, and in the determination of in-place dry unit weight of soils.

    5.2 The principal objection to the use of the direct heating for water content determination is the possibility of overheating the soil, thereby yielding a water content higher than would be determined by Test Methods D2216. While not eliminating this possibility, the incremental drying procedure in this test method will minimize its effects. Some heat sources have settings or controls that can also be used to reduce overheating. Loose fitting covers or enclosures can also be used to reduce overheating while assisting in uniform heat distribution.

    5.3 The behavior of a soil when subjected to direct heating is dependent on its mineralogical composition, and as a result, no one procedure is applicable for all types of soils or heat sources. The general procedure of this test method applies to all soils, but test details may need to be tailored to the soil being tested.

    5.4 When this test method is to be used repeatedly on the same or similar soil from a given site, a correction factor can usually be determined by making several comparisons between the results of this test method and Test Methods D2216. A correction factor is valid when the difference is consistent for several comparisons, and is reconfirmed on a regular specified basis.

    5.5 This test method may not be appropriate when precise results are required, or when minor variations in water content will affect the results of other test methods, such as borderline situations where small variations in the measured water content could affect acceptance or rejection.

    5.6 This test method is not appropriate for specimens known to contain flammable organics or contaminants, and other test methods should be utilized in these situations.

    Note 1: The quality of the results produced by this test method is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection. Users of this test method are cautioned that compliance with Practice D3740 does not in itself ensure reliable results . Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.

    1. Scope

    1.1 This test method covers procedures for determining the water content of soils by drying with direct heat, such as using a hotplate, stove, blowtorch, and the like.

    1.2 This test method can be used as a substitute for Test Methods D2216 when more rapid results are desired to expedite other phases of testing and slightly less accurate results are acceptable.

    1.3 When questions of accuracy between this test method and Test Methods D2216 arise, Test Methods D2216 shall be the referee method.

    1.4 This test method is applicable for most soil types. For some soils, such as those containing significant amounts of halloysite, mica, montmorillonite, gypsum, or other hydrated materials, highly organic soils or soils that contain dissolved solids, (such as salt in the case of marine deposits), this test method may not yield reliable water content values due to the potential for heating above 110°C or lack of means to account for the presence of precipitated solids that were previously dissolved.

    1.5 The values stated in SI units are to be regarded as standard. Performance of the test method utilizing another system of units shall not be considered non-conformance. The sieve designations are identified using the “standard” system in accordance with Specification E11, such as 2.0-mm and 19-mm, followed by the “alternative” system of No. 10 and 3/4-in., respectively, in parentheses.

    1.6 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in D6026, unless otherwise superseded by this standard.

    1.6.1 The procedures used to specify how data are collected/recorded or calculated, in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.

    1.6.2 Significant digits are especially important if the water content will be used to calculate other relationships such as moist mass to dry mass or vice versa, wet unit weight to dry unit weight or vice versa, and total density to dry density or vice versa. For example, if four significant digits are required in any of the above calculations, then the water content has to be recorded to the nearest 0.1 %, for water contents below 100 %. This occurs since 1 plus the water content (not in percent) will have four significant digits regardless of what the value of the water content is (below 100 %); that is, 1 plus 0.1/100 = 1.001, a value with four significant digits. While, if three significant digits are acceptable, then the water content can be recorded to the nearest 1 %.

    1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    D653 Terminology Relating to Soil, Rock, and Contained Fluids

    D2216 Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

    D3740 Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction

    D4753 Guide for Evaluating, Selecting, and Specifying Balances and Standard Masses for Use in Soil, Rock, and Construction Materials Testing

    D6026 Practice for Using Significant Digits in Geotechnical Data

    E11 Specification for Woven Wire Test Sieve Cloth and Test Sieves


    ICS Code

    ICS Number Code 13.080.40 (Hydrological properties of soil)

    Referencing This Standard
    Link Here
    Link to Active (This link will always route to the current Active version of the standard.)

    DOI: 10.1520/D4959-16

    ASTM International is a member of CrossRef.

    Citation Format

    ASTM D4959-16, Standard Test Method for Determination of Water Content of Soil By Direct Heating, ASTM International, West Conshohocken, PA, 2016, www.astm.org

    Back to Top