If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass
    ASTM D4914 / D4914M - 16

    Standard Test Methods for Density of Soil and Rock in Place by the Sand Replacement Method in a Test Pit

    Active Standard ASTM D4914 / D4914M | Developed by Subcommittee: D18.08

    Book of Standards Volume: 04.08

      Format Pages Price  
    PDF 16 $60.00   ADD TO CART
    Hardcopy (shipping and handling) 16 $60.00   ADD TO CART
    Standard + Redline PDF Bundle 32 $72.00   ADD TO CART

    Significance and Use

    5.1 These test methods are used to determine the in-place density of compacted materials in construction of earth embankments, road fills, and structure backfill. For construction control, these test methods are often used as the bases for acceptance of material compacted to a specified density or to a percentage of a maximum unit weight determined by a standard laboratory test method (such as determined from Test Method D698 or D1557), subject to the limitations discussed in 1.4.

    5.2 These test methods can be used to determine the in-place density of natural soil deposits, aggregates, soil mixtures, or other similar material.

    Note 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of these test methods are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable testing depends on many factors; Practice D3740 provides a means of evaluating some of those factors.

    1. Scope

    1.1 These test methods cover the determination of the in-place density of soil and rock using a pouring device and calibrated sand to determine the volume of a test pit. The word “rock” in these test methods is used to imply that the material being tested will typically contain particles larger than 3 in. [75 mm].

    1.2 These test methods are best suited for test pits with a volume from 0.03 to 0.17 m3 [1 to 6 ft3]. In general, the materials tested would have a maximum particle size of 75 to 125 mm [3 to 5 in.].

    1.2.1 For larger sized excavations and soil containing larger particles, Test Method D5030 is preferred.

    1.2.2 Test Method D1556 or D2167 are usually used to determine the volume of test holes smaller than 0.03 m3 [1 ft3]. While the equipment illustrated in these test methods is used for volumes less than 0.03 m3 [1 ft3], the test methods allow larger versions of the equipment to be used when necessary.

    1.3 Two test methods are provided as follows:

    1.3.1 Test Method A—In-Place Density of Total Material (Section 10).

    1.3.2 Test Method B—In-Place Density of Control Fraction (Section 11).

    1.4 Selection of Test Methods: 

    1.4.1 Test Method A is used when the in-place density of total material is to be determined. Test Method A can also be used to determine percent compaction or percent relative density when the maximum particle size present in the in-place material being tested does not exceed the maximum particle size allowed in the laboratory compaction test (refer to Test Methods D698, D1557, D4253, D4254, and D7382). For Test Methods D698 and D1557 only, the dry density determined in the laboratory compaction test may be corrected for larger particle sizes in accordance with, and subject to the limitations of Practice D4718.

    1.4.2 Test Method B is used when percent compaction or percent relative density is to be determined and the in-place material contains particles larger than the maximum particle size allowed in the laboratory compaction test or when Practice D4718 is not applicable for the laboratory compaction test. Then the material is considered to consist of two fractions, or portions. The material from the in-place dry density test is physically divided into a control fraction and an oversize fraction based on a designated sieve size (see Section 3). The dry density of the control fraction is calculated and compared with the dry density(s) established by the laboratory compaction test(s).

    1.5 Any materials that can be excavated with hand tools can be tested provided that the void or pore openings in the mass are small enough (or a liner is used) to prevent the calibrated sand used in the test from entering the natural voids. The material being tested should have sufficient cohesion or particle interlocking to maintain stable sides during excavation of the test pit and through completion of this test. It should also be firm enough not to deform or slough due to the minor pressures exerted in digging the hole and pouring the sand.

    1.6 These test methods are generally limited to material in an unsaturated condition and are not recommended for materials that are soft or friable (crumble easily) or in a water condition such that water seeps into the hand-excavated hole. The accuracy of the test methods may be affected for materials that deform easily or that may undergo volume change in the excavated hole from standing or walking near the hole during the test.

    1.7 The values stated in either SI units or inch-pound presented in brackets are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

    1.8 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.

    1.8.1 The procedures used to specify how data are collected, recorded or calculated in this standard are regarded as the industry standard. In addition they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.

    1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazards statements, see Sections 8 and A1.5.

    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    C127 Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate

    C566 Test Method for Total Evaporable Moisture Content of Aggregate by Drying

    D653 Terminology Relating to Soil, Rock, and Contained Fluids

    D698 Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3))

    D1556 Test Method for Density and Unit Weight of Soil in Place by Sand-Cone Method

    D1557 Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3))

    D2167 Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method

    D2216 Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass

    D3740 Practice for Minimum Requirements for Agencies Engaged in Testing and/or Inspection of Soil and Rock as Used in Engineering Design and Construction

    D4253 Test Methods for Maximum Index Density and Unit Weight of Soils Using a Vibratory Table

    D4254 Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density

    D4718 Practice for Correction of Unit Weight and Water Content for Soils Containing Oversize Particles

    D4753 Guide for Evaluating, Selecting, and Specifying Balances and Standard Masses for Use in Soil, Rock, and Construction Materials Testing

    D5030 Test Method for Density of Soil and Rock in Place by the Water Replacement Method in a Test Pit

    D6026 Practice for Using Significant Digits in Geotechnical Data

    D7382 Test Methods for Determination of Maximum Dry Unit Weight and Water Content Range for Effective Compaction of Granular Soils Using a Vibrating Hammer

    E11 Specification for Woven Wire Test Sieve Cloth and Test Sieves

    ICS Code

    ICS Number Code 93.020 (Earth works. Excavations. Foundation construction. Underground works)

    UNSPSC Code

    UNSPSC Code 11111501(Soil)

    Referencing This Standard
    Link Here
    Link to Active (This link will always route to the current Active version of the standard.)

    DOI: 10.1520/D4914_D4914M-16

    Citation Format

    ASTM D4914 / D4914M-16, Standard Test Methods for Density of Soil and Rock in Place by the Sand Replacement Method in a Test Pit, ASTM International, West Conshohocken, PA, 2016, www.astm.org

    Back to Top