If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass
    ASTM D4691 - 17

    Standard Practice for Measuring Elements in Water by Flame Atomic Absorption Spectrophotometry

    Active Standard ASTM D4691 | Developed by Subcommittee: D19.05

    Book of Standards Volume: 11.01

      Format Pages Price  
    PDF 8 $54.00   ADD TO CART
    Hardcopy (shipping and handling) 8 $54.00   ADD TO CART
    Standard + Redline PDF Bundle 16 $64.00   ADD TO CART

    Significance and Use

    5.1 Elemental constituents in water and wastewater need to be identified to support effective water quality monitoring and control programs. Currently, one of the most widely used and practical means for measuring concentrations of elements is by atomic absorption spectrophotometry.

    5.2 The major advantage of atomic absorption over atomic emission is the almost total lack of spectral interferences. In atomic emission, the specificity of the technique is almost totally dependent on monochromator resolution. In atomic absorption, however, the detector sees only the narrow emission lines generated by the element of interest.

    1. Scope

    1.1 This practice covers general considerations for the quantitative determination of elements in water and waste water by flame atomic absorption spectrophotometry. Flame atomic absorption spectrophotometry is simple, rapid, and applicable to a large number of elements in drinking water, surface waters, and domestic and industrial wastes. While some waters may be analyzed directly, others will require pretreatment.

    1.2 Detection limits, sensitivity, and optimum ranges of the elements will vary with the various makes and models of satisfactory atomic absorption spectrometers. The actual concentration ranges measurable by direct aspiration are given in the specific test method for each element of interest. In the majority of instances the concentration range may be extended lower by use of electrothermal atomization and conversely extended upwards by using a less sensitive wavelength or rotating the burner head. Detection limits by direct aspiration may also be extended through sample concentration, solvent extraction techniques, or both. Where direct aspiration atomic absorption techniques do not provide adequate sensitivity, the analyst is referred to Practice D3919 or specialized procedures such as the gaseous hydride method for arsenic (Test Methods D2972) and selenium (Test Methods D3859), and the cold vapor technique for mercury (Test Method D3223).

    1.3 Because of the differences among various makes and models of satisfactory instruments, no detailed operating instructions can be provided. Instead the analyst should follow the instructions provided by the manufacturer of a particular instrument.

    1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversion to inch-pound units that are provided for information only and are not considered standard.

    1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements see Section 9.

    1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    D1129 Terminology Relating to Water

    D1193 Specification for Reagent Water

    D2972 Test Methods for Arsenic in Water

    D3223 Test Method for Total Mercury in Water

    D3370 Practices for Sampling Water from Flowing Process Streams

    D3859 Test Methods for Selenium in Water

    D3919 Practice for Measuring Trace Elements in Water by Graphite Furnace Atomic Absorption Spectrophotometry

    D4453 Practice for Handling of High Purity Water Samples

    D5810 Guide for Spiking into Aqueous Samples

    D5847 Practice for Writing Quality Control Specifications for Standard Test Methods for Water Analysis

    E178 Practice for Dealing With Outlying Observations

    E520 Practice for Describing Photomultiplier Detectors in Emission and Absorption Spectrometry

    E863 Practice for Describing Atomic Absorption Spectrometric Equipment

    ICS Code

    ICS Number Code 13.060.50 (Examination of water for chemical substances)

    UNSPSC Code

    UNSPSC Code

    Referencing This Standard
    Link Here
    Link to Active (This link will always route to the current Active version of the standard.)

    DOI: 10.1520/D4691-17

    Citation Format

    ASTM D4691-17, Standard Practice for Measuring Elements in Water by Flame Atomic Absorption Spectrophotometry, ASTM International, West Conshohocken, PA, 2017, www.astm.org

    Back to Top