ASTM C1609 / C1609M - 19

    Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading)

    Active Standard ASTM C1609 / C1609M | Developed by Subcommittee: C09.42

    Book of Standards Volume: 04.02


      Format Pages Price  
    PDF 9 $48.00   ADD TO CART
    Hardcopy (shipping and handling) 9 $48.00   ADD TO CART
    Standard + Redline PDF Bundle 18 $58.00   ADD TO CART



    Significance and Use

    5.1 The first-peak strength characterizes the flexural behavior of the fiber-reinforced concrete up to the onset of cracking, while residual strengths at specified deflections characterize the residual capacity after cracking. Specimen toughness is a measure of the energy absorption capacity of the test specimen. The appropriateness of each parameter depends on the nature of the proposed application and the level of acceptable cracking and deflection serviceability. Fiber-reinforced concrete is influenced in different ways by the amount and type of fibers in the concrete. In some cases, fibers may increase the residual load and toughness capacity at specified deflections while producing a first-peak strength equal to or only slightly greater than the flexural strength of the concrete without fibers. In other cases, fibers may significantly increase the first-peak and peak strengths while affecting a relatively small increase in residual load capacity and specimen toughness at specified deflections.

    5.2 The first-peak strength, peak strength, and residual strengths determined by this test method reflect the behavior of fiber-reinforced concrete under static flexural loading. The absolute values of energy absorption obtained in this test are of little direct relevance to the performance of fiber-reinforced concrete structures since they depend directly on the size and shape of the specimen and the loading arrangement.

    5.3 The results of this test method may be used for comparing the performance of various fiber-reinforced concrete mixtures or in research and development work. They may also be used to monitor concrete quality, to verify compliance with construction specifications, obtain flexural strength data on fiber-reinforced concrete members subject to pure bending, or to evaluate the quality of concrete in service.

    5.4 The results of this standard test method are dependent on the size of the specimen.

    Note 5: The results obtained using one size molded specimen may not correspond to the performance of larger or smaller molded specimens, concrete in large structural units, or specimens sawn from such units. This difference may occur because the degree of preferential fiber alignment becomes more pronounced in molded specimens containing fibers that are relatively long compared with the cross-sectional dimensions of the mold. Moreover, structural members of significantly different thickness experience different maximum crack widths for a given mid-span deflection with the result that fibers undergo different degrees of pull-out and extension.

    1. Scope

    1.1 This test method evaluates the flexural performance of fiber-reinforced concrete using parameters derived from the load-deflection curve obtained by testing a simply supported beam under third-point loading using a closed-loop, servo-controlled testing system.

    1.2 This test method provides for the determination of first-peak and peak loads and the corresponding stresses calculated by inserting them in the formula for modulus of rupture given in Eq 1. It also requires determination of residual loads at specified deflections, the corresponding residual strengths calculated by inserting them in the formula for modulus of rupture given in Eq 1 (see Note 1). It provides for determination of specimen toughness based on the area under the load-deflection curve up to a prescribed deflection (see Note 2) and the corresponding equivalent flexural strength ratio.

    Note 1: Residual strength is not a true stress but an engineering stress computed using simple engineering bending theory for linear elastic materials and gross (uncracked) section properties.

    Note 2: Specimen toughness expressed in terms of the area under the load-deflection curve is an indication of the energy absorption capability of the particular test specimen, and its magnitude depends directly on the geometry of the test specimen and the loading configuration.

    1.3 This test method utilizes two preferred specimen sizes of 100 by 100 by 350 mm [4 by 4 by 14 in.] tested on a 300 mm [12 in.] span, or 150 by 150 by 500 mm [6 by 6 by 20 in.] tested on a 450 mm [18 in.] span. A specimen size different from the two preferred specimen sizes is permissible.

    1.4 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

    1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

    1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.


    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    C31/C31M Practice for Making and Curing Concrete Test Specimens in the Field

    C42/C42M Test Method for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete

    C78/C78M Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)

    C125 Terminology Relating to Concrete and Concrete Aggregates

    C172/C172M Practice for Sampling Freshly Mixed Concrete

    C192/C192M Practice for Making and Curing Concrete Test Specimens in the Laboratory

    C823/C823M Practice for Examination and Sampling of Hardened Concrete in Constructions

    C1140/C1140M Practice for Preparing and Testing Specimens from Shotcrete Test Panels

    C1812/C1812M Practice for Design of Journal Bearing Supports to be Used in Fiber Reinforced Concrete Beam Tests

    E4 Practices for Force Verification of Testing Machines


    ICS Code

    ICS Number Code 91.100.40 (Products in fibre-reinforced cement)

    UNSPSC Code

    UNSPSC Code 30111500(Concrete and mortars)


    Referencing This Standard
    Link Here
    Link to Active (This link will always route to the current Active version of the standard.)

    DOI: 10.1520/C1609_C1609M-19

    Citation Format

    ASTM C1609 / C1609M-19, Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading), ASTM International, West Conshohocken, PA, 2019, www.astm.org

    Back to Top