If you are an ASTM Compass Subscriber and this document is part of your subscription, you can access it for free at ASTM Compass
    ASTM C1474 - 19

    Standard Test Method for Analysis of Isotopic Composition of Uranium in Nuclear-Grade Fuel Material by Quadrupole Inductively Coupled Plasma-Mass Spectrometry

    Active Standard ASTM C1474 | Developed by Subcommittee: C26.05

    Book of Standards Volume: 12.01

      Format Pages Price  
    PDF 9 $54.00   ADD TO CART
    Hardcopy (shipping and handling) 9 $54.00   ADD TO CART
    Standard + Redline PDF Bundle 18 $64.00   ADD TO CART

    Significance and Use

    5.1 Nuclear-grade reactor fuel material must meet certain criteria, such as those described in Specifications C753, C776, C778, and C833. Included in these criteria is the uranium isotopic composition. This test method is designed to demonstrate whether or not a given material meets an isotopic requirement and whether the effective fissile content is in compliance with the purchaser's specifications.

    1. Scope

    1.1 This test method is applicable to the determination of the isotopic composition of uranium (U) in nuclear-grade fuel material. The following isotopic weight percentages are determined using a quadrupole inductively coupled plasma-mass spectrometer (Q-ICP-MS): 233U, 234U, 235U, 236U, and 238U. The analysis can be performed on various material matrices after acid dissolution and sample dilution into water or dilute nitric (HNO3) acid. These materials include: fuel product, uranium oxide, uranium oxide alloys, uranyl nitrate (UNH) crystals, and solutions. The sample preparation discussed in this test method focuses on fuel product material but may be used for uranium oxide or a uranium oxide alloy. Other preparation techniques may be used and some references are given. Purification of the uranium by anion-exchange extraction is not required for this test method, as it is required by other test methods such as radiochemistry and thermal ionization mass spectroscopy (TIMS). This test method is also described in ASTM STP 13442.

    1.2 The 233U isotope is primarily measured as a qualitative measure of its presence by comparing the 233U peak intensity to a background point since it is not normally found present in materials. The example data presented in this test method do not contain any 233U data. A 233U enriched standard is given in Section 8, and it may be used as a quantitative spike addition to the other standard materials listed.

    1.3 A single standard calibration technique is used. Optimal accuracy (or a low bias) is achieved through the use of a single standard that is closely matched to the enrichment of the samples. The intensity or concentration is also adjusted to within a certain tolerance range to provide good statistical counting precision for the low-abundance isotopes while maintaining a low bias for the high-abundance isotopes, resulting from high-intensity dead time effects. No blank subtraction or background correction is utilized. Depending upon the standards chosen, enrichments between depleted and 97 % can be quantified. The calibration and measurements are made by measuring the intensity ratios of each low-abundance isotope to the intensity sum of 233U, 234U, 235U, 236U, and 238U. The high-abundance isotope is obtained by difference.

    1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. The instrument is calibrated and the samples measured in units of isotopic weight percent (Wt %). For example, the 235U enrichment may be stated as Wt % 235U or as g 235U/100 g of U. Statements regarding dilutions, particularly for μg/g concentrations or lower, are given assuming a solution density of 1.0 since the uranium concentration of a solution is not important when making isotopic ratio measurements other than to maintain a reasonably consistent intensity within a tolerance range.

    1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 9.

    1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    C753 Specification for Nuclear-Grade, Sinterable Uranium Dioxide Powder

    C776 Specification for Sintered Uranium Dioxide Pellets for Light Water Reactors

    C778 Specification for Standard Sand

    C833 Specification for Sintered (Uranium-Plutonium) Dioxide Pellets for Light Water Reactors

    C859 Terminology Relating to Nuclear Materials

    C1347 Practice for Preparation and Dissolution of Uranium Materials for Analysis

    D1193 Specification for Reagent Water

    E135 Terminology Relating to Analytical Chemistry for Metals, Ores, and Related Materials

    E456 Terminology Relating to Quality and Statistics

    E882 Guide for Accountability and Quality Control in the Chemical Analysis Laboratory

    ICS Code

    ICS Number Code 27.120.30 (Fissile materials and nuclear fuel technology)

    UNSPSC Code

    UNSPSC Code 15131500(Nuclear fuel)

    Referencing This Standard
    Link Here
    Link to Active (This link will always route to the current Active version of the standard.)

    DOI: 10.1520/C1474-19

    Citation Format

    ASTM C1474-19, Standard Test Method for Analysis of Isotopic Composition of Uranium in Nuclear-Grade Fuel Material by Quadrupole Inductively Coupled Plasma-Mass Spectrometry , ASTM International, West Conshohocken, PA, 2019, www.astm.org

    Back to Top