ASTM A800 / A800M - 14

    Standard Practice for Steel Casting, Austenitic Alloy, Estimating Ferrite Content Thereof

    Active Standard ASTM A800 / A800M | Developed by Subcommittee: A01.18

    Book of Standards Volume: 01.02

      Format Pages Price  
    PDF 7 $50.00   ADD TO CART
    Hardcopy (shipping and handling) 7 $50.00   ADD TO CART
    Standard + Redline PDF Bundle 14 $60.00   ADD TO CART

    Significance and Use

    4.1 The tensile and impact properties, the weldability, and the corrosion resistance of iron-chromium-nickel alloy castings may be influenced beneficially or detrimentally by the ratio of the amount of ferrite to the amount of austenite in the microstructure. The ferrite content may be limited by purchase order requirements or by the design construction codes governing the equipment in which the castings will be used. The quantity of ferrite in the structure is fundamentally a function of the chemical composition of the alloy and its thermal history. Because of segregation, the chemical composition, and, therefore, the ferrite content, may differ from point to point on a casting. Determination of the ferrite content by any of the procedures described in the following practice is subject to varying degrees of imprecision which must be recognized in setting realistic limits on the range of ferrite content specified. Sources of error include the following:

    4.1.1 In Determinations from Chemical Composition—Deviations from the actual quantity of each element present in an alloy because of chemical analysis variance, although possibly minor in each case, can result in substantial difference in the ratio of total ferrite-promoting to total austenite-promoting elements. Therefore, the precision of the ferrite content estimated from chemical composition depends on the accuracy of the chemical analysis procedure.

    4.1.2 In Determinations from Magnetic Response—Phases other than ferrite and austenite may be formed at certain temperatures and persist at room temperature. These may so alter the magnetic response of the alloy that the indicated ferrite content is quite different from that of the same chemical composition that has undergone different thermal treatment. Also, because the magnets or probes of the various measuring instruments are small, different degrees of surface roughness or surface curvature will vary the magnetic linkage with the material being measured.

    4.1.3 In Determinations from Metallographic Examination—Metallographic point count estimates of ferrite percentage may vary with the etching technique used for identification of the ferrite phase and with the number of grid points chosen for the examination, as explained in Test Method E562.

    4.2 The estimation of ferrite percent by chemical composition offers the most useful and most common method of ferrite control during melting of the metal.

    4.3 For most accurate estimate of ferrite percent, a quantitative metallographic method should be used.

    1. Scope

    1.1 This practice covers procedures and definitions for estimating ferrite content in certain grades of austenitic iron-chromium-nickel alloy castings that have compositions balanced to create the formation of ferrite as a second phase in amounts controlled to be within specified limits. Methods are described for estimating ferrite content by chemical, magnetic, and metallographic means.

    1.2 The grades covered by this practice are: CF-3, CF-3A, CF-8, CF-8A, CF-3M, CF-3MA, CF-8M, CF-8C, CG-8M, and CH-10.

    1.3 The values stated in either inch-pound units or SI units are to be regarded separately as standard. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the practice.

    1.3.1 Within the text, the SI units are shown in brackets.

    1.4 This standard does not purport to address the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

    2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

    ASTM Standards

    A351/A351M Specification for Castings, Austenitic, for Pressure-Containing Parts

    A751 Test Methods, Practices, and Terminology for Chemical Analysis of Steel Products

    A799/A799M Practice for Steel Castings, Stainless, Instrument Calibration, for Estimating Ferrite Content

    A941 Terminology Relating to Steel, Stainless Steel, Related Alloys, and Ferroalloys

    A1067/A1067M Specification for Test Coupons for Steel Castings

    E353 Test Methods for Chemical Analysis of Stainless, Heat-Resisting, Maraging, and Other Similar Chromium-Nickel-Iron Alloys

    E562 Test Method for Determining Volume Fraction by Systematic Manual Point Count

    Constitution Diagrams

    DeLong Diagram for Estimating Ferrite Content of

    Schaeffler Diagram for Estimating Ferrite Content

    Schoefer Diagram for Estimating Ferrite Content o revision) Appendix of this practice.

    American Welding Society Specification

    AWS A 4.2, Procedures for Calibrating Magnetic Instruments to Measure the Delta Ferrite Content of Austenitic Stainless Steel Weld Metal Available from American Welding Society (AWS), 8669 NW 36 Street, #130, Miami, FL 33166-6672,

    ICS Code

    ICS Number Code 77.140.80 (Iron and steel castings)

    UNSPSC Code

    UNSPSC Code 31101603(Steel sand casting)

    Referencing This Standard
    Link Here
    Link to Active (This link will always route to the current Active version of the standard.)

    DOI: 10.1520/A0800_A0800M-14

    Citation Format

    ASTM A800 / A800M-14, Standard Practice for Steel Casting, Austenitic Alloy, Estimating Ferrite Content Thereof, ASTM International, West Conshohocken, PA, 2014,

    Back to Top