Quantitative Characterization and Performance of POROUS IMPLANTS for HARD TISSUE APPLICATIONS

Jack E. Lemons, editor

ASTM STP 953
QUANTITATIVE CHARACTERIZATION AND PERFORMANCE OF POROUS IMPLANTS FOR HARD TISSUE APPLICATIONS

A symposium
sponsored by ASTM
Committee F-4 on Medical and Surgical Materials and Devices
Nashville, TN, 18–19 Nov. 1985

ASTM SPECIAL TECHNICAL PUBLICATION 953
Jack E. Lemons, University of Alabama
at Birmingham, editor

ASTM Publication Code Number (PCN)
04-953000-54

1916 Race Street, Philadelphia, PA 19103
Quantitative characterization and performance of porous implants for hard tissue applications: a symposium/sponsored by ASTM Committee F-4 on Medical and Surgical Materials and Devices, Nashville, TN, 18–19 Nov. 1985; Jack E. Lemons, editor.

(ASTM special technical publication; 953)

"ASTM publication code number (PCN) 04-953000-54."

Includes bibliographies and indexes.


I. Lemons, Jack E. II. ASTM Committee F-4 on Medical and Surgical Materials and Devices. III. Series.


RD755.5.Q36 1987

617'.4710592'028—dc19

DNLM/DLC

for Library of Congress 87-33430

Copyright © by AMERICAN SOCIETY FOR TESTING AND MATERIALS 1987

Library of Congress Catalog Card Number: 87-33430

NOTE

The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
DEDICATION

This volume is dedicated to the memory of Emmett M. Lunceford, Jr., M.D.

Dr. Lunceford, as a professor of orthopaedic surgery at the University of South Carolina School of Medicine and senior member of the Moore Clinic, fulfilled all aspects of education, research, and service associated with his chosen discipline. His activities in basic, applied, and clinical research earned him the respect of all colleagues. Within ASTM Committee F-4 on Medical and Surgical Materials and Devices, his activities were many, and his last active responsibility was the chairmanship of the Section on Arthroplasty. Most important to all who met Dr. Lunceford, was his nature as a gentleman who always had time to discuss his programs, provide guidance to colleagues on many topics, and provide credit where due and encouragement where indicated. Many of the results presented during the symposium and published in this volume are an outgrowth of his contributions. We will all miss Dr. Lunceford and, with deep appreciation, we dedicate this book to him.
FOREWORD

The symposium on Quantitative Characterization and Performance of Porous Implants for Hard Tissue Applications was held 18–19 Nov. 1985, in Nashville, TN. The event was sponsored by ASTM Committee F-4 on Medical and Surgical Materials and Devices, in cooperation with the American Academy of Orthopaedic Surgeons. Jack E. Lemons, of the University of Alabama at Birmingham, presided as chairman of the symposium and also served as editor of this publication.
Related
ASTM Publications


Cell Culture Test Methods, STP 810 (1983), 04-810000-54

Medical Devices: Measurements, Quality Assurance, and Standards, STP 800 (1983), 04-800000-54

Titanium Alloys in Surgical Implants, STP 796 (1983), 04-796000-54

Corrosion and Degradation of Implant Materials, STP 684 (1979), 04-684000-27
A Note of Appreciation to Reviewers

The quality of the papers that appear in this publication reflects not only the obvious efforts of the authors but also the unheralded, though essential, work of the reviewers. On behalf of ASTM we acknowledge with appreciation their dedication to high professional standards and their sacrifice of time and effort.

ASTM Committee on Publications
ASTM Editorial Staff

Helen Mahy
Janet R. Schroeder
Kathleen A. Greene
William T. Benzing
Contents

Overview

MECHANICAL PROPERTIES OF POROUS COATINGS

Adhesion of Fiber Metal Coatings—PHILLIP ANDERSEN AND DANNY L. LEVINE 7

Determining the Cantilever-Bend Fatigue Integrity of a Porous-Coated Tibial Component—JAMES A. DAVIDSON, HUGH U. CAMERON, AND MICHAEL BUSHELOW 16
Discussion 27

MECHANICAL PROPERTIES OF SUBSTRATE AND COATING

Effect of Hot Isostatic Pressing on the Mechanical and Corrosion Properties of a Cast, Porous-Coated Co-Cr-Mo Alloy—FREDERICK S. GEORGETTE 31

Mechanical Evaluation of ASTM F75 Alloy in Various Metallurgical Conditions—WALTER P. SPIRES, JR., DAVID C. KELMAN, AND JOHN A. PAFFORD 47

Metallurgical Relationships of Porous-Coated ASTM F75 Alloys—DAVID J. LEVINE 60

CHARACTERIZATION OF PORE DIMENSIONS

Comparison of Measurement Methods for Characterization of Porous Coatings—GARY HAMMAN 77

Morphological Characterization of Porous Coatings—TODD S. SMITH 92

BIODEGRADATION AND BIOLOGICAL ANALYSES

Biocorrosion Studies of Ultralow-Temperature-Isotropic Carbon-Coated Porous Titanium—RAYMOND A. BUCHANAN, E. DOUGLAS RIGNEY, JR., AND CHARLES D. GRIFFIN 105
Anodic Polarization of Porous-Coated Vitallium Alloy—Effect of Passivation—BRIAN J. EDWARDS AND PAUL HIGHAM 115

*In Vitro* Corrosion of Porous Alloys—LINDA C. LUCAS, JACK E. LEMONS, JAMES LEE, AND PAUL DALE 124
Discussion 136

Characterization of the Corrosion Behavior of Porous Biomaterials by A-C Impedance Techniques—KIRK J. BUNDY AND RICHARD E. LUEDEMANN 137

Urinary Excretion Levels of Metal Ions in Patients Undergoing Total Hip Replacement with a Porous-Coated Prosthesis: Preliminary Results—LYNNE C. JONES, DAVID S. HUNGERFORD, ROBERT V. KENNA, GUY BRAEM, AND VIRGINIA GRANT 151
Discussion 162

Biological Significance of Metal Ion Release—STANLEY A. BROWN, KATHARINE MERRITT, LILLIAN J. FARNSWORTH, AND TIMOTHY D. CROWE 163
Discussion 181

**Performance in Humans and Laboratory Animals**

Histological Comparison of Biological Fixation and Bone Modeling with Canine and Human Porous-Coated Hip Prostheses—J. DENNIS BOBYN, CHARLES A. ENGH, AND ROBERT M. PILLIAR 185

Radiographic Criteria for the Clinical Performance of Uncemented Total Joint Replacements—THOMAS A. GRUEN 207
Discussion 218

Histomorphometric Analysis of Bone Ingrowth into Porous-Coated Dental Implants—JOHN C. KELLER AND FRANKLIN A. YOUNG, JR. 219
Discussion 232

Clinical Indicators of Dental Implant Performance—FRANKLIN A. YOUNG AND G. MARCOS MONTES 233
MODELING AND IMPLANT FIXATION

Fundamental Aspects of Load Transfer and Load Sharing—
JAMES B. KOENEMAN 241

Strain Analysis of the Proximal Femur After Total Hip
Replacement—HANK C. K. WUH, LYNNE C. JONES, AND
DAVID S. HUNGERFORD 249

Effect of Press Fit on Lateral Stem Stresses and the Integrity of
Porous-Coated Femoral Prostheses: An In Vitro Strain
Gage Study—JAMES A. DAVIDSON, MICHAEL BUSHELOW,
ANDREW J. GAVENS, AND MICHAEL F. DEMANE 264
Discussion 275

A Biomechanical and Histological Examination of Different
Surface Treatments of Titanium Implants for Total Joint
Replacement—SUBRATA SAHA, JAMES A. ALBRIGHT,
MICHAEL E. KEATING, AND RAGHUNATH P. MISRA 276
Discussion 284

Quantitation of Bone Ingrowth into Porous Implants Submitted
to Pulsed Electromagnetic Fields—PATRICK DALLANT,
ALAIN MEUNIER, PASCAL CHRISTEL, GENEVIEVE GUILLEMIN,
AND LAURENT SEDEL 286
Discussion 299

SYSTEMS FOR FUTURE APPLICATIONS

Flexible Porous Titanium for Revision Surgery: Concept and
Initial Data—PAUL DUCHEYNE AND JOHN M. CUCKLER 303

Porous Polysulfone-Coated Femoral Stems—MICHAEL DEMANE,
NEIL B. BEALS, DAVID L. MCDOWELL,
FREDERICK S. GEORGETTE, AND MYRON SPECTOR 315

Biomechanical and Morphometric Testing Methods for Porous
and Surface-Reactive Biomaterials—ULRICH GROSS,
WOLFGANG ROGGENDORF, HERMANN-JOSEPH SCHMITZ,
AND VOLKER STRUNZ 330
A Method for Quantitative Characterization of Porous Biomaterials Using Automated Image Analysis—
EDWIN C. SHORS, EUGENE W. WHITE, AND ROBERT M. EDWARDS 347
Discussion 358

Comparison of Porous and Nonporous Hydroxyapatite and Anorganic Xenografts in the Restoration of Alveolar Ridges—PHILIP J. BOYNE 359

Grafts of HTR Versus Kiel Bone in Experimental Long Bone Defects in Rats—ITZHAK BINDERMAN, M. GOLDSTEIN, I. HOROWITZ, N. FINE, S. TAICHER, ARTHUR ASHMAN, AND A. SHTEYER 370

Development of Tricalcium Phosphate Ceramic Cements—PRAPHULLA K. BAJPAI, CATHY M. FUCHS, AND DALE E. MCCULLUM 377

Resorbable Porous Aluminum-Calcium-Phosphorus Oxide (ALCAP) Ceramics—PRAPHULLA K. BAJPAI, GEORGE A. GRAVES, JR., DAVID R. MATTIE, AND FRANK B. MCFALL III 389

Studies on a Porous Alumina Dental Implant Reinforced with Single-Crystal Alumina: Animal Experiments and Human Clinical Applications—AKIYOSHI YAMAGAMI, SHUHEI KOTERA, AND HARUYUKI KAWAHARA 399

INDEXES

Author Index 411

Subject Index 413