PROBABILISTIC FRACTURE MECHANICS AND FATIGUE METHODS: Applications for Structural Design and Maintenance

Bloom/Ekvall, editors

ASTM STP 798
PROBABILISTIC FRACTURE MECHANICS AND FATIGUE METHODS: APPLICATIONS FOR STRUCTURAL DESIGN AND MAINTENANCE

ASTM SPECIAL TECHNICAL PUBLICATION 798
J. M. Bloom, Babcock and Wilcox Co.
J. C. Ekvall, Lockheed-California Co. editors

ASTM Publication Code Number (PCN) 04-798000-30

1916 Race Street, Philadelphia, Pa. 19103
NOTE
The Society is not responsible, as a body, for the statements and opinions advanced in this publication.
Foreword

This publication, Probabilistic Fracture Mechanics and Fatigue Methods: Applications for Structural Design and Maintenance, contains papers presented at the symposium on Probabilistic Methods for Design and Maintenance of Structures which was held in St. Louis, Missouri, 19 Oct. 1981. The symposium was sponsored by ASTM Committees E-9 on Fatigue and E-24 on Fracture Testing. J. M. Bloom, Babcock and Wilcox, Co., and J. C. Ekvall, Lockheed-California Co., presided as symposium chairmen and editors of this publication.
Related
ASTM Publications

Residual Stress Effects in Fatigue, STP 776 (1982), 04-776000-30

Low Cycle Fatigue and Life Prediction, STP 770 (1982), 04-770000-30

Design of Fatigue and Fracture Resistant Structures, STP 761 (1982), 04-761000-30

Methods and Models for Predicting Fatigue Crack Growth Under Random Loading, STP 748 (1981), 04-748000-30

Fracture Mechanics (13th Conference), STP 743 (1981), 04-743000-30

Fractography and Materials Science, STP 733 (1981), 04-733000-30
A Note of Appreciation to Reviewers

The quality of the papers that appear in this publication reflects not only the obvious efforts of the authors but also the unheralded, though essential, work of the reviewers. On behalf of ASTM we acknowledge with appreciation their dedication to high professional standards and their sacrifice of time and effort.

ASTM Committee on Publications
ASTM Editorial Staff

Janet R. Schroeder
Kathleen A. Greene
Rosemary Horstman
Helen M. Hoersch
Helen P. Mahy
Allan S. Kleinberg
Virginia M. Barishck
Contents

Introduction 1

PROBABILISTIC FRACTURE MECHANICS

Probabilistic Evaluation of Conservatisms Used in Section III, Appendix G, of the ASME Code—G. M. JOURIS 7
Discussion 17

Applications of a Probabilistic Fracture Mechanics Model to the Influence of In-Service Inspection on Structural Reliability—D. O. HARRIS AND E. Y. LIM 19

Statistical Scatter In Fracture Toughness and Fatigue Crack Growth Rate Data—G. O. JOHNSTON 42

Probabilistic Defect Size Analysis Using Fatigue and Cyclic Crack Growth Rate Data—G. G. TRANTINA AND C. A. JOHNSON 67

STATISTICAL ASPECTS OF FATIGUE

Characterization of the Variability in Fatigue Crack Propagation Data—D. F. OSTERGAARD AND B. M. HILLBERRY 97

Exploratory Study of Crack-Growth-Based Inspection Rationale—E. K. WALKER 116

Cumulative Damage: Reliability and Maintainability—F. KOZIN AND J. L. BOGDANOFF 131

Method for Determining Probability of Structural Failure from Aircraft Counting Accelerometer Tracking Data—C. E. LARSON AND W. R. SHAWVER 147
Discussion 160
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of Structural Failure Probability Under Spectrum Loading Conditions — C. E. BRONN</td>
<td>161</td>
</tr>
<tr>
<td>$S-N$ Fatigue Reliability Analysis of Highway Bridges — PEDRO ALBRECHT</td>
<td>184</td>
</tr>
<tr>
<td>Summary</td>
<td>205</td>
</tr>
<tr>
<td>Index</td>
<td>213</td>
</tr>
</tbody>
</table>