Subject Index

A

Air cooling-induction heating, 370
Alloy 718, 411
Aluminum, 562
Aluminum plate alloy, 309
American Iron and Steel Institute
AISI304, 105
American Society of Mechanical
Engineers, 263
ASTM standards, 214
A 515, Grade B, 243
A 533, Grade B, 485
E 399, 146, 263
E 740, 146
E 813, 469
E 1152, 469
E 1290, 469
Automotive design, 327

B

Bending, 146, 214, 243, 515
Bending test program, 146
British Standards Institute 7448, 469
Burst test, 535

C

Cladding, 515
Cleavage, 179, 296
precleavage tearing, 485
Coarse grain heat affected zone, 427
Composites
fiber reinforced metal laminates, 123
glass woven fabric, 55
overwrap for pressure vessel, 86
polymer matrix composite laminates, 123
Constraint, 243, 485, 535
effects, 179, 214
in-plane, 296
model, 198
plastic, 671
Crack arrest toughness, 617
Crack closure, 3, 411
Crack, continuous circumferential, 642
Crack, corner, 656
Crack, fatigue, 397
Crack front tunnelling, 535, 617
Crack growth, 3
fatigue, 411
model, 123
rates, 602
resistance, 535
safe-life analysis, 86
stable, 146, 167, 309, 577
unstable, 577
Cracking tests, hydrogen-induced, 602
Crack opening, critical, 123
Crack propagation, 411, 562, 617
stable, 55
Crack, shallow, 485
Crack size, initial, 355
Crack, surface, 146, 214, 243, 656
Crack tip opening angle, 309
Crack tip opening displacement, 296, 309, 427, 450, 469
Crack tip stress fields, 214
Crack tip stress triaxiality, 485
Crack velocity, 617
Creep, 70
Cylinders, circumferential cracks, 641

D

Damage accumulation, time-dependent, 70
Damage, fatigue, 105
Damage growth, 123
Damage, impact, 86
Damage mechanisms, 370
Damage model
 continuum, 485
cumulative, 397
Damage tolerance analysis, 656
Damage tolerance design, 3
Deformation, 535
cyclic microstructural, 105
Delamination, 55
Dissipation approach, 535
Ductile fracture, 562
Ductile tearing, 485
Ductile-to-brittle transition, 179, 243
Ductility, 167
Durability, ground vehicle, 327

Elasticity, 3
Electric Power Research Institute, 263
Embrittlement, 427, 515

F
Failure prediction, 562
Fatigue analysis, 397
Fatigue, high cycle, 342
Fatigue intensity factor, 355
Fatigue life prediction, 327
Fiber surface treatments, 55
Finite element analysis, 3, 296, 411
 elastic-plastic, 515
 physical shape modeling, 562
 residual stress effects, 499
 rubber toughened polymer blends, 671
 three-dimensional, 243, 309
Finite elements, 179, 641
Flaw analysis, pressure vessel steels, 515

H
Heat affected zone, 427
Heat transfer, 370
HSLA, 469
HSLA 100, 450
Hydrogen-induced cracking tests, 602

I
Impact damage, 86
Inference equations, 469

J
JIC, 167
J-integral, 3, 243, 469, 499
Joint efficiency, 450
J-Q theory, 296, 485
J-R curve, 535

K
KIC, 198, 263
KJC, 198, 263, 280

L
Leak-before-burst failure mode, 86
Liners, metallic, 86
Loading, 214, 296, 355, 535
 applied, 123
 bending, 146, 214, 243, 515
 conditions, 656
 cubic, 641
 cyclic, 105
 elastic-plastic, 411
 fatigue, 55
 field service, 342
 spectra, 342
 static, 55
 tensile, 146
 tension, 243
 thermomechanical, 370
Local brittle zone, 427
Low cycle fatigue, 370, 397

M
Magnification factors, 641
Maintenance, high temperature equipment, 70
Martensite-austenite constituent, 427
Master curve, 263, 280
Material improvement, ground vehicle, 327
Microstructural deformation, 105
Microvoid nucleation, 167
Models and modeling, 55
characteristic distance, 167
cleavage fracture, 296
crack growth, 123
cumulative damage, 397
physical shape, 562
scaling, 179
thermal, 499
three-dimensional constraint effects, 179

N
Nickel-iron base alloys, 602
Nondestructive evaluation techniques, 86
Nonisothermal testing, 370
Numerical analysis, 469

O
Order statistics, 198, 280

P
Palmgren-Miner rule, 397
Paris law, 411
Performance optimization, ground vehicle, 327
Piping fracture assessment, 499
Plane strain core analysis, 309
Plasticity, 3
Plastic strain, 167
Plate, crack stress intensity factors, 656
Polymer blends, 671
Polymethylmethacrylate, 577
Power plant gas turbines, 70
Pressure oscillation, 397
Pressure tubes, 535
Pressure vessels, 397, 499
metallic, 86
reactor, 485
steel, 105, 263, 515

R
Railway bogie components, 342
Reliability, ground vehicle, 327
Residual stress, 397, 499, 515
Rubber cavitation, 671

S
SA508, 105
Service behavior, 70, 342
Service load fatigue testing, 342
Shear lead yielding, 671
Silicon nitride, 577
S-N curve, 355
Space system pressure vessels, 86
Stability analyses, 577
Standards
AISI 304, 105
BSI 7448, 469
military, 86
Steels, 280
ASTM A 533 Grade B, 485
ASTM A 515 Grade B, 243
ferritic, 179, 198
high strength, 602
HSLA, 469
HSLA 100, 450
low carbon, 167
plates, 427, 450, 617
pressure vessel, 105, 263, 515
SA 508, 105
structural alloy, 427
Strain ageing embrittlement, 515
Strain control, 411
Strength, residual, 123
Stress analysis, 370
Stress, applied, 411, 617
Stress concentration, 656
Stress corrosion cracking resistance, 427
Stress criterion, local fracture, 617
Stress, hoop, 397
Stress, hydrostatic, 671
Stress intensity factor, 3, 214, 411
comparison with fracture toughness, 146
cylinders, 641
determining, 656
pressure vessel steels, 515
steel plate, 617
Stress intensity field, 577
Stress intensity threshold, 355, 602
Stress range, 355
Stress, residual, 397, 499, 515
Structural alloy steel plate, 427

T

Tearing
 precleavage, 485
 stable, 309, 562

Tensile strength, 450
Tensile/yield strength, 123
Tension test program, 146
Thermal stress analysis, 370
Thermomechanical fatigue, 370
Time-dependent fatigue, 370

Toughness, 55, 243, 263
 brittle materials, 577
 fracture, 671
 inference equations, 469
 pressure vessels, 198, 263
 pre-strain influence on, 167
 scatter, 296
 specimens with surface cracks, 146
 transition region, 280
 values, 55

Transition, ductile-to-brittle, 179, 243
Transition region, 263, 280, 296
Transition temperature, 198
Tungsten, 577
Turbines, 70, 370

W

Weibull statistics method, 263
Weibull stress, 179
Weight function method, 656
Weight reduction, structural, 327
Welded structures, 342
Welding simulation, 499
Weld material fracture assessment, 485
Weld metal, 450
Weldments, 427

X

X-ray diffraction, 105
X-ray double crystal diffractometry, 105

Y

Yield level approximation, 499
Yield strength, 123, 167, 450, 602

Z

Valve bodies, cracks, 641
Vinyl ester composite, 55
Zirconium/niobium pressure tubes, 535