Subject Index

A

ABI test. (See Automated ball indentation)
Aeronautic and space materials, 77
Aging embrittlement, 16, 217
Alloys, 228
Aluminum matrix, 77
Annealing, 417, 424, 440
ASTM STANDARDS
A 370; 312
A 508; 211
E 23-86; 336
E 399; 144, 149, 162, 183, 192, 200–201, 205–206, 208
E 399-90; 131, 312
E 813; 163, 171, 174, 178, 200, 205–206
E 813-81; 185
E 813-89; 131, 136, 137, 313, 314
E 1152-87; 131, 136
Austenitic stainless steel, 289
Automated ball indentation (ABI) test, 27, 35(table), 40–41(tables)
Automated data acquisition, 368
Automated machine, 356, 368

B

Bend test, 256, 356
Brittle to ductile transition behavior, 118

C

Carbon fiber, 77
Charpy impact testing, 47–89
Charpy test
fracture toughness, 106
laser weld reconstitution, 62
material behavior under reirradiation, 417
neutron irradiated composites, 77
nuclear plant life extension, 405
radiation embrittlement, 424
Chemical milling, 368
Cleavage, 93
Clip gage, 130
Coercivity, 5
Constraint, 93
Correlation, 47, 405
2-1/4Cr-1Mo steel, 217
Crack extension, 130
Creep test, 311, 356
CT (See Side grooved compact)
Cyclic loading, 27
Cylindrical specimens, 311, 314(table), 316–317(tables)

D

Damage, radiation, 5, 336
DBTT. (See Ductile brittle transition temperature)
Defect clusters, 228
Degradation, 217
Disk compact specimen, 130, 311
Displacement rate, 336
Ductile brittle transition temperature (DBTT)
ferritic steels, 47
small punch test, 241, 248–250(tables)
small specimen testing, 289, 417, 424
toughness degradation, 217
Ductile fracture, 106, 162
Ductility, 289

E

EDM (See Electrical discharge machining)
Elastic plastic fracture mechanics, 162
Electric potential method
fracture toughness evaluation, 182
Electrical discharge machining (EDM), 368
Electrochemical evaluation, 16
Embrittlement
ductile brittle transition temperature, 47, 417
irradiation induced, 5
neutron induced, 47, 336
nuclear plant life extension, 405
reconstitution welding technique, 440
Energy partition, 405
Engineering alloys, fracture toughness
punch test, 162

F

Fast flux test facility (FFTF)/Materials
open test assembly (MOTA), 356
Fatigue, 267, 275, 311
Fe-0.15C alloy, 217
Ferritic steel, 47, 289, 405
Ferritic steel irradiation, 241
FFTF (See Fast flux test facility)
Field apparatus, 27
Finite element, 199
Flow properties, 27
Fractography, 217
Fracture, 118, 289
Fracture toughness
bend and punch testing, 217–307
degradation, 217
micromechanical material models, 106
miniature specimens, testing, 77, 199
neutron irradiated composites, 77
punch test, 162
stress field data, 207(table)
subsize specimens, 93, 130
test procedure, 143
test results, 139(table)
Zircaloy-2 pressure tubes, 182
Fracture toughness testing, 93–213
punch test, 162
subsize specimens, 93, 311
Fusion reactor materials, 256, 267, 275

H

Hardening, iron-based alloys, 228
Heat affected zone, 27
Heavy ion irradiation, 228
High-temperature, gas-cooled reactor—
Japan, 16
Hot cell, 289
Hydrogen, 182
Hysteresis loss, 5

I

Impact toughness, 16, 77
Indentation method, 275
In-situ testing, 27
Interferometry, 386
Intergranular fracture, 16, 217
Ion irradiated alloys, 228
Irradiated ferritic steels, 241
Irradiated materials, 275
Irradiation embrittlement, 440
Irradiation effects, 130
Irradiation induced embrittlement, 5, 417
Irradiation surveillance program, 106
Isochronal annealing, 228

J

J integral, 93, 106, 130, 199
J-R curves, 130
Japan Atomic Energy Research Institute,
289
Japan—high temperature gas-cooled
reactor, 16
Japanese materials testing reactor, 77

L

Laser weld, 62
Life extension, 311
Low cycle fatigue testing, 311

M

Magnetic properties measurements, 5, 11(table)
Manipulator, 289
Material behavior—brittle steels, 118
Material degradation, 217
Material toughness measurements, 162
Materials open test assembly (MOTA), 356
MATRON (See Monbusho automated
tensile machine)
Measurement, fracture toughness, 162
Mechanical properties, test methods, 286
Mechanical test techniques, 324, 356
Metal matrix composites, 77
Micro fatigue test methods, 275
Microhardness, 217, 218–219(tables)
Micromechanical material models, 106
Microprobe, 27
Micro-Vickers hardness test, 228
Miniature tension specimens, 368, 373(table), 376(table),
Miniaturized tension test, 289, 386
Miniaturized testing
Charpy test, 77
fracture toughness, 199
Japan Atomic Energy Agency, 289
miniature-disk, 267, 270(table), 272(table)
novel tension test machine, 386
post-irradiation, 241, 275
radiation damage, 336
specimens, 311
tensile specimen, 368
MNT (See Miniaturized testing)
Monbusho automated tensile machine, 356
MOTA See Materials open test assembly.
MST (See Miniaturized testing)

Neutron irradiation
effects on embrittlement, 405
estimation of toughness degradation, 217
ferritic steels, 47, 405
iron based alloys, 228
radiation damage, 336
remote control small specimens, 324
zircaloy-2 pressure tubes, 182
Neutron source, 289
Neutron spectra, 336
Nondestructive and nonintrusive testing
 techniques, 5–44
electrochemical evaluation, 16
 in-situ measurements, 27
Normalization, 47
Notched disk specimen, 143
Nuclear applications materials, 77, 93, 182
Nuclear components—safety, 106, 186
Nuclear power plants
 license renewal, 62
 micromechanical material models, 106
 miniaturized miniaturized specimen
technology, 267, 270(table),
 272(table)
Nuclear pressure vessel steels, 5, 16, 27,
 405, 440

O, P
Orientation, 182
Partial unloading, 27
Phosphorus segregation, 16
PIE (See Post irradiation examination)
Pipes, 27
Plane strain, 143, 199
Plant life extension (PLEX), 199
Plastic strain, 162
PLEX (See Plant life extension)
Polystyrene, 143
Post irradiation examination (PIE), 356
Potential drop, 130
Precrack, 47
Pressure tube, 182, 191(table)
Pressure vessels
 alloys, 228, 229(table)
 embrittlement, 5, 47, 58(table), 440
 micromechanical material models, 106
 neutron induced embrittlement, 336
 plastic zone, 64(table)
 rate and size effects, 75(table)
 steel components, 106, 440
Pressurized thermal shock (PTS), 199
Primary circuit, 106
Property-property correlations, 336
PTS (See Pressuried thermal shock)
Punching
 fracture toughness, 162
 Japan, 289
 miniature specimen fabrication, 368
 test results, 170(table)

R
Radioactive specimens, mechanical testing
 by remote control, 324
Radiation effects, 5, 228, 336
Reactor pressure vessels
 neutron irradiation, 228, 417
 radiation embrittlement, 424
 weld material, 106, 440
Reconstitution, 62, 440
Reirradiation, 417
Relaxation test, 356
Remanence, 5
Remote control, 324
Residual creep; strength evaluation, 311
Residual life evaluation, 311
Robot manipulating system, 324

S
Side grooved compact (CT) specimens, 106
Silicon carbide fiber, 77
Size effects, 47, 93, 336, 405
Small punch test, 217, 218–219(tables), 241
Small specimen test technique (SSTT),
 241, 256, 275, 289, 386
Small tension test, 256
Specimen fabrication, 368
Specimen reconstitution, 440
Spherical indenter, 27
SSTT (See Small specimen test technique)
Stainless steel, 267
Static and dynamic fracture toughness, 143
Steels
 2-1/4Cr-1Mo, for nuclear pressure
 vessels, 16
Steel—continued
A533B, 405
A17075-T651, 143
alloys
Fe-C-Cu, FeC-Cu-Ni, 228
ferritic, structural behavior, 118
irradiated weld materials, 106
Strength, 77, 241, 289, 311
Stress field modification, 199
Structural integrity, 27, 118
Subsized specimens, 311
Surveillance
nuclear power plants, 62
reactor pressure vessel, 16

T

TEM disk specimen, 289
Temper embrittlement, 217
Tensile properties, 256, 264(table), 368
Tension testing
irradiated small specimens, 335, 356
Japan Atomic Energy Research Institute, 289
neutron irradiated small specimens, 356
novel machine, 386
primary circuit steel components, 106
section, 311–401
specimens, 336
Tension-tension fatigue, 275
Testing techniques
electric potential method, 182
fracture toughness, 130, 182
micro fatigue test methods, 275
nondestructive and nonintrusive, 5–44
novel miniature machine, 386
reactor pressure tubes, 182
small specimens, 106, 289, 335, 356
Thermal aging embrittlement, 16
Thermal fatigue, 267
Thermal shock, 199
Toughness, ferritic steel irradiation, 241
Toughness measurements, 162
Transgranular fracture, 217
Transition behavior, 118, 417, 424, 440

U

Unloading compliance, 130
Upper shelf energy, 47, 405

V, W

Vessel wall sampling, 440
Wedge opening loading (WOL)-X-type
specimens, 106
Weld materials, 106, 440
Welds, 27, 62
WOL-X-specimens (See Wedge opening
loading X type specimens)

Y, Z

Yield strength, 27
Zircaloy-2, fracture toughness evaluation, 182