Subject Index

A

A-c potential drop technique, 1116-1117
Activation energy, values, 248
Advanced equipment, utilization, 21-23
AF2-1DA, strainrange partitioning, total-strain version, 335-337
Aging, 209, 798
 crack growth, 215-216
 cyclic hardening-softening effect, 802, 805
duplex stainless steel, 822
 fatigue life effect, 802, 804
AISI H13 hot-work tool steel, 576-587
 chemical composition, 577
 experimental procedure, 577
 isothermal low cycle fatigue results, 579-581
 lifetime results, 583, 585-587
 non-isothermal thermo-mechanical fatigue results, 581, 583-584
 theory, 577-579
Alloy 1200
 cyclic response, 99
 fatigue performance, 104-105
Alloy 6351
 breaks in cyclic response, 99
 cyclic hardening, 102, 104
 cyclic response, 98
Alloy 5083
 cyclic hardening, 102, 104
 cyclic response, 98
Alloy 7005, fatigue performance, 104-105
Alloy API, crack growth, 284
 rate versus C*, 285
Alloys, design, 11-12
Al-0.97Mg alloy, fatigue deformation coefficients, 855-856
Al-Mg-Si alloys, 765-774
 chemical composition, 766
 fatigue-life relationship, 769
 fatigue test data, 771
 grain size, 766
 grain structure, 767
 heat treatment, 766
 number of cycles to failure, 772-773
 procedure, 765-769
 specimen dimensions, 767
stress-plastic strain dependence, 771
stress-strain diagram, 769-771
stress-strain hysteresis diagram, 768
tensile test data, 771
Al 2024-T3, 987
Aluminide coating, 672
Aluminum alloy, 94-105
 age hardened, 765
 cyclic and monotonic parameters, 103
 cyclic hardening, 58, 95
cyclic hardening exponent, 104
cyclic stress-strain curve, 95, 97
description, 96
 experimental procedures, 95
 fatigue toughness, 103-104
 fracture toughness, 103-104
 hysteresis loop, 94
 low cycle fatigue parameters, 102
 Manson-Coffin curve, 94
 microstructure, 102
 notch tip strains, 1041-1042
 stress amplitude, versus fatigue life, 101
total plastic energy, versus fatigue life, 101
 see also specific alloys
7475 Aluminum alloy, crack path, 13
Al-4.5Zn-2.5Mg., stress-strain curve
 over-aged, 64
 peak-aged, 63, 74
 under-aged, 62, 74
Anisotropy, fatigue strength, 1181, 1195-1197
Ashby maps, 437
ASME N-47 method, life estimation, 1092-1093
Aspect ratio, 8, 1206, 1210
ASTM A 470, 973, 1238
ASTM E 606, 79, 471, 765, 774, 1242
Austenitic stainless steels, 414-438, 519
 continuous fatigue specimens, 419-422
 correlation between intergranular damage and stress relaxation, 428-429
 crack propagation law, 420
 creep-fatigue interaction, 543-556
 creep fatigue specimens, 422-427
 creep tests, 416

Copyright © 1988 by ASTM International www.astm.org
Austenitic stainless steels (cont.)
experimental procedure, 415-416
fatigue failure, 717-720
fatigue resistance, 438
fractography, 416, 419-427
intergranular crack, 422, 424
intergranular damage, 422-423, 425
low-cycle fatigue tests, 416-419
Manson-Coffin plot, 547
metallography, 416, 419-427
parallel between creep-fatigue resistance and creep ductility, 428-431
round cavities, 422, 424
secondary crack density, 422
stress relaxation, as creep-fatigue life correlating parameter, 427-428
striation spacing measurements, 419-421
see also Specific stainless steels
Austenitic weld material, 209
Automotive design, cyclic deformation applications, 1231-1234
Axial fatigue, predicting bending fatigue from, 31-33
Axial strain, 1070 steel, 197, 202

B
B-1900
bi-modal γ' distribution, 826, 830
grain boundary, 829
microstructure, after standard heat treatment, 826-827
see also Equiaxed cast superalloy
B-1900 + Hf, 638-655
apparatus and test conditions, 640-641
base material description, 640
bithermal fatigue, 634-635
chemical composition, 640
coarsening, 647, 652-653
cracking mode, 654
cyclic hardening/softening, 642, 645, 650-654
cyclic stress-strain response, 641-645, 654
dislocation structure, 650-652
flow stress, 653-654
fractographic observations, 645-651
in-phase cycled specimen, 649
out-of-phase cycled specimen, 648
heat treatment, 640
hysteresis loop, 642, 644
isothermal strainrange partitioning, 632-645
partial dislocation, 653
rafting, 647, 652-653
strain as function of time, 641, 643
TEM observations, 645-651
tensile properties, 641
thermal-mechanical testing, 641-642
Back stress, 487
accuracy of measurements, 498-499
prediction, 492-493
time-dependent behavior, 491-492
Bauschinger effect, 978
Bauschinger energy parameter, 94
Bending fatigue, predicting from axial fatigue data, 31-33
Besseling’s model, 700-701
Best fitting ellipse, 9
Biaxial fatigue, 861, 874
Biaxial strain controlled fatigue tests, Inconel 718, 867, 869
Biaxial stress
constant life lines, 862
gas turbine engine disk bore, 870
Bilinear stress-strain curve, 1025, 1040
finite element calculations, 1039
Bithermal fatigue, 625-637
B-1900 + Hf, 634-635
case for bithermal cycling, 626-629
dog-leg cycle, 630
prior results, 629-631
specimen geometry, 632
thermomechanical loading effects, 628
Block loading, 184
hysteresis loops from, 117
70-30 brass
 crack growth rate, 1063
 crack length, 1052
 crack propagation, 1053
 crack tip fracture strain, 1063
tensile fracture ductility, 1063
Brittle zones, 746
Burgers vectors, 647, 651

C
Carbide
formation on grain boundaries and slip bands, 746-747
oxidation, 670
solubility limit, 579
Carbon steel, 1181
chemical composition, 752, 1183
 crack growth rate, 1063
 crack length, 1052
 crack propagation, 1051-1052
 crack tip fracture strain, 1063
mechanical properties, 752, 1183
tensile fracture ductility, 1063
Cast steels, 1144
characteristic and equivalent characteristic length, 1151-1152
chemical composition, 1150
cyclic and fatigue properties, 1151
fatigue notch factors, 1152
fully-reversed fatigue limits, 1151
load-strain hysteresis, 1155
load versus strain, 1156
monotonic tensile properties, 1150
properties, 1148-1151
Cavitation
 crack growth, 1254
 HP-1P steam turbine rotor, 1250, 1252
Cavity
 growth, 316-317
 nucleation, 316
 rate equation, 316
 spacing, 316
Center notched specimen, 237-238
Ceramics, 26
Channeled one-dimensional flow model, 1209-1210
Characteristic length, 1144, 1146-1147
cast steels, 1151-1152
load versus equivalent strain, 1156
notched strip specimens, 1152
Charpy, impact properties, 1239
Chip carrier array solder joints, 591, 594-595
Cobalt-base superalloy, 1115
Coefficient of correlation, nickel-based superalloys, 465
Coefficient of thermal expansion, 9Cr-1Mo-V-Nb steel, 121
Coffin-Manson relationship. See Manson-Coffin relationship
Cold work
 20Cr-25Ni-Nb stainless steel, 719-720
 fatigue life effect, 719-720
Colonies, 839
Combined cycle fatigue, 961
Compact tension specimen, finite element net, 1007-1008
Component size, 209
Component stress history, 510, 512-515
Composite materials, 12, 26
Compressive limits, 1223
Compressive overload
 fatigue life effects, 179-182
 see also Fatigue, compression and compressive overload effects
Compressive prestrain
 schematic diagram, 165
 see also Very low cycle fatigue tensile or compressive prestrain
Compressive stress, fatigue life, 177-178
Computer simulation, 7-9, 1218
 crack initiation and propagation, 1227, 1229
Concentration factor, 1227
Constant amplitude straining
 2.25 Cr-1Mo steel, 43-56
 experimental procedure, 44-45
 Constant displacement amplitude cycling, 287
 Constant load amplitude cycling, 286
 Constant plastic strain amplitude tests, 439
Constitutive behavior
 emphasis, 28-30
 Ni-Co-Cr-Al-Y coated PWA 1480 superalloy, 375-377
 predicted versus observed, René 80, 703-706
Constitutive equations, 123, 132, 1067-1068
 FEM analysis, 1071, 1079
 Constitutive modeling, 329
 Constitutive theory
 René 80, 700-701
 three-dimensional version, 137
 Constrained diffusion cavity growth, 437
 Continuous cycling, Inconel 625, 471-473
 Continuous fatigue, crack density, 434
 Continuum mechanics
 macroscopic, 989
 model, 611
Copper
 cyclic data comparison, 75
 cyclic stress-strain response, 151, 153
 deformation history, 156
 dislocation cell size and alternating plastic strain, 66, 72
 dislocation structures, 65-66
 fatigue hardening, 88
 fatigue resistance, 151-152
 incremental-step test, 70
 monotonic stress-strain response, 151, 153
 multiple-step test, 70
 plastic-strain limit test, 69
 silver penetration along tilt boundaries, 1211
 stress-strain curve, 66
 transient flow behavior, 151-152
 Copper alloys, cyclic hardening, 58
 Corrosion-fatigue, 812
Crack, 1022
 characteristics, 919
 configurations, 1027
 density, as function of plastic strain, 453
 depth
 \(R \) ratio variation, 224
 variation with stress, 219, 221
 development, notched shaft, 885-888
 equivalent strain energy density hypothesis, 1030-1034
 extension curves, 1186-1187, 1193
 formation, Waspaloy, 730-731, 735-736, 741-742, 744-745
 front, 966
 ground stages, 876
 intercrystalline, 601-602, 609
Crack (cont.)
leading, manganese-sulphide inclusion, 1196
mode, B-1900 + Hf, 654
monitoring, 209
notation, 1024
nucleation, 776
strain aging ferrous alloys, 786
stress concentration, 899
path, 553, 965
shape, 209, 212
size, fatigue life, 882
straight front, 228
velocity, versus period of cycling, 9-10
Widmannstatten microstructure, 847
Crack closure, 209
 crack growth effects, 220, 223-224
 plastic strain, 220, 222
 variation with depth, 223
Cracked pearlite ratio, 757, 760-761
residual ductility, 763
Crack growth, 257, 261-263, 313, 558, 874
 accelerating and decelerating, 209
 air and helium, 566
 cavitation, 1254
 coalescence, 1189
 creep component, 308
 environmental and creep effects, 307
 equation, 1228
 equivalent stress intensity range, 226
 frequency dependence, 282
 gray cast iron, 910-912
 versus life plots, 886
 load relaxation, 287
modeling, 210
 propagation over final half of specimen, 218
 real-time, 9-10
 time dependence, 574
Crack growth law, 317
 empirical relations, 211-212
 extension to deeper cracks, 218-219
 separation of initiation and endurance cycles, 216-217
 shape effects, 212
 validity for large specimens, 219
Crack growth rate, 268, 419, 434, 1050, 1125
 air effect, 298, 300-301
 analysis, 263-267
 70-30 brass, 1063
 carbon steel, 1063
 critical depth, 221
 cyclic J-integral, 264, 267-268, 978-980, 1213
 effective stress, 465
 high temperature alloys, 227
 Inconel 718, 958
 intergranular bulk damage, 423-424
 nickel-based superalloys, 460-461
 pipe and specimen testing, 11
 René 95, 298-299
 predicted and observed, 301
 secondary crack density, 423
 striation spacing, 423
 Ti 6-4, 956
 underaged 7X75 alloys, 13
 variation with frequency, 215
 variation with total strainrange, 213
Cracking behavior, 899-919
 background, 899-902
 direction, 913
 experimental procedure, 902-903
 gray cast iron, 910-912
 Inconel 718, 905-908
 life prediction, 916-919
 multiaxial theories, 901
 SAE 1045 steel, 907, 909-911
 304 stainless steel, 903-905
 316 stainless steel, 902-905
 strain amplitude dependency, 914
 tension states, 913
 torsion, 903, 913, 916-917
 fatigue, 901
 transition from stage I to stage II, 900
 acceleration by oxide failure, 197
 center notched specimen, 237-238
 computer simulation, 1227, 1229
 continual observation, 1185
 criterion, 421
 cycle period and prior exposure role, 569, 572-573
 definition, 560, 665, 876, 1117
 double edge notched specimen, 237-238
 duplex stainless steel, 817-818
 elevated temperature, 968
 endurance, 713
 equiaxed cast superalloy, 836
 experimental procedure, 752
 formation of longitudinal shear crack, 886, 888
 materials, experimental apparatus, and procedure, 237-239
 microfracture processes, 755
 microstructure, 900
 multiaxial fatigue, 867
 Neuber's rule, 1089
 Ni-Co-Cr-Al-Y coated PWA 1480 superalloy, 381-382
 notched specimen, 886, 890-891, 896, 949, 951-954
 oxidation-assisted, 573
from oxide pits, 568, 570-571
period, as function of failure life, 421
polycrystalline 316L stainless steel, 442-443, 446-448
preferentially oxidized interdendritic areas, 668
relative notch opening displacement, 236, 240
shear planes, 900
single-crystal 316L stainless steel, 448-449, 452-453
site
duplex stainless steel, 814
equiaxed cast superalloy, 833-835
strain amplitude versus number of cycles, 585
TC6 titanium alloy, 843-844, 844-850
versus total mechanical strain range, 669
Waspaloy, 733, 736
Crack initiation life, 238-240, 715, 1016, 1020, 1116
equation, 236
evaluation method, 244
versus hold time, 248-249
law, 240-242
versus parameter $T(\log t_p + C)$, 244, 246
prediction, 993
ratio, 239-240
scatter, 248, 250-254
temperature dependence, 242, 245
Crack length, 1052
cycle ratio, 1193
densities, polycrystalline 316L stainless steel, 446-448
fatigue damage, 1193-1194
fatigue life, 1044
numbers of cycles, 1054
versus strain state, 894-895
switching of strain level, 1190
Crack opening, 209
plastic strain, 220, 222
ratio, R variation, 225
variation with depth, 223
Crack propagation, 558, 711-713, 938, 951, 955-958, 961, 972, 1048, 1164-1172, 1218
compressive overloads, 174
cracking, 588
continual observation, 1185
cycle- and time-dependent, 1165-1167
cycle period role, 573-574
uevaiaxed cast superalloy, 836
failure phases, 713-716
law, austenitic stainless steels, 420
nickel-base superalloys. See Nickel-base superalloys
obstacles, 900
predicted and experimental, 1230-1231
simulation, 1225, 1227-1231
TC6 titanium alloy, 850-851
threshold, 573
values of m, 970
Crack propagation life
equation, 236
versus hold time, 248-249
law, 242, 244-248
versus parameter $T(\log t_p + C)$, 244, 247
temperature dependence, 242, 245
Crack propagation rate, 1163
creep fatigue, 435
versus creep J-integral range, 1171-1172
1Cr-1Mo-0.25V steel, 1164, 1168
versus fatigue J-integral range, 1170
intergranular crack, 425, 427
304 stainless steel, 1164, 1169
Crack tip, 1049
cavitation, endurance effect, 722-726
definition, 589
fatigue, 317
fatigue behavior, 367
cracking, 588
Ni-Co-Cr-Al-Y coated PWA 1480 superalloy, 376
overstress dependence, 515-516
reversal stress influence, 114
temperature and period effect, 596-597, 604-605
total strain energy density, 1258
Creep crack growth
cavitation, endurance effect, 722-726
characteristics, 589-599
combined with fatigue, 114-119
components, 596, 600-603
creep, 435
cracking, 588
9Cr-1Mo-V-Nb steel, 111-112
definition, 589
definition, 589
deformation, 1199
definition, 589
Creep damage (cont.)
intergranular fracture due to, 322
life prediction, 1121–1124
Spera's accumulated creep damage
method, 1121–1122, 1124
Creep ductility, 544–545, 547
creep-fatigue resistance, 428–431
versus creep life, 430
Creep-fatigue, 329, 342, 414, 588, 625
crack density, 434–435
crack propagation
path, 422
rate, 435
crack-tip opening displacement due to,
317–319
cycle, total-strain-range and life, 332
environment study, nickel-base superal-
loys, 294–295, 297–303
fatigue life, 418
initiation period, 435
intergranular damage, 431
Ni-Co-Cr-Al-Y coated PWA 1480 superal-
loy, 371–383
overstress concept application, 487–499
back stress, prediction, 492–493
damage parameter, 493–495
damage rate equation, 497
elastic core, 496–497
experimental procedure, 488
failure criterion, 495
linear damage rule, 495–496
strain waveforms, 489
stress-strain response, 490–491
test results, 488, 490
unloading behavior, 491
resistance, creep ductility, 428–431
solder joint, fatigue, 589–590
Creep-fatigue crack growth, 281–292
application, 289–290
constant displacement amplitude cycling, 287
constant load amplitude cycling, 286
cycle to time dependent cracking, 282–283
data interpretation, 288–289
experiments, 283–285
Creep-fatigue degradation, 1096–1111
analysis methods, 1099
basic philosophy, 1097
experimental work, 1102–1104
finite element analysis, 1100–1102
Neuber notch strain range analysis, 1099–
1100
uniaxial low cycle fatigue parameters,
1097–1099
Creep-fatigue interaction, 313–326, 1066
cavity, growth, 316–317
creep ductility, 544–545, 547
creep-fatigue testing, 544, 546–547
creep rupture, 548
creep testing, 544, 547–548
damage accumulation, 545, 548
experimental procedure, 319–320, 544
life prediction, 319
microstructure, 549–554
model, 314–316
intergranular damage, 435
nitrogen effect, 543–556
nucleation of cavities and cavity spacing,
316
plastic strain range, 321
relaxation during hold times, 545, 549
round cavities, 315
specimen geometry, 320
stress-strain pattern, tensile hold period,
314
test, 544, 546–547
304 stainless steel, 237, 239
unstable crack advance, 315
wedge-crack formation, 552–553
see also Viscoplasticity, based on overstress
Creep-fatigue life, stress relaxation, 427–428
Creep-fatigue life prediction, 399–412, 500–
517
analytical stress-strain behavior, 405–410
component stress history, 510, 512–515
creep-fatigue test data, 509
cycles to failure, 401, 511
cyclic creep test, 505–506
cyclic relaxation test, 503–505
cyclic stress-strain response, 402–405, 510–
511
damage parameter evaluation, 507–509
hysteresis loop, 409
incremental dwell, 503–505
inelastic analysis, 407–408
inside hysteresis test, 505–507
minimum creep rate, 407
p-variation, 514
relaxation curve, 410
strain-hold test, 403
simulation, 508, 510
strain-range partitioning, 402
strength coefficient, 406–407
stress-strain
history at critical area, 513
under operating conditions, 514–516
testing procedure and conditions, 400, 502–
504
test machine control, 503
test material and specimen, 400, 406–407,
502
test system description, 503
Creep J-integral range, 1163
versus crack propagation rate, 1171–1172
Creep law, 112
Creep life
 versus creep ductility, 430
 versus intergranular creep damage, 430
Creep properties, 399, 406
 inelastic analysis, 408
Creep rate
 grain boundary, 591
 HP-1P steam turbine rotor, 1239
 minimum, master curve, 407
 Monkman-Grant rule, 1123
Creep rupture, 548
 strength, master curve, 404
Creep strain, versus time, 112, 120
Creep test
 austenitic stainless steels, 237, 239, 416
 creep-fatigue interaction, 544, 547-548
Critical plane concepts, multiaxial fatigue, 866-869
Critical strain, 1063-1064
 grain-boundary crack initiation, 616-617
Critical stress drop, 49-50
1.25Cr-0.5Mo steel, 1097
 Manson-Coffin relation, 1107
 materials property, 1105
 notch test, 1108
2.25Cr-1Mo steel, 412
 compressive hold period effect, 715-716
 crack growth, 286-287
 displacement versus time, 286
 rate versus C*, 288
 cyclic hardening/softening, 45, 47, 924-926
 elastic core, 496-497
 inelastic strain range versus number of
 cycles to failure, 1173-1174
 low-cycle fatigue parameters, 46
 monotonic mechanical properties, 46
 strain energy parameters, 1173-1174
 variable amplitude straining, 922-937
see also Constant amplitude straining;
 Creep-fatigue life prediction
9Cr-1Mo-V-Nb pressure vessel steel, cyclic
 stress-strain time response, 107-122,
 112-114
combined creep and fatigue, 114-119
creep, 111-112
hardening, modulus and coefficient of ther­
 mal expansion data, 121
hysteresis loops near half life, 117
material, 108
monotonic and cyclic hardening, 108-111
one-bar restrained thermal cycling test, 117-118
two-bar ratchetting test, 118-120
12Cr-Mo-V-Nb steel, 973
 chemical composition, 973
defect size and fatigue life, 978, 980
 variable strain range, 975-976, 979
1Cr-1Mo-0.25V steel
 chemical composition, 973
 crack propagation rate, 1164, 1168
 strain energy parameters, 1177
 variable strain range, 975, 978
1Cr-Mo-V steel, 972, 1259
 chemical composition, 1238
 fracture surface, 220
 low cycle fatigue characterization, 1237
 tensile properties, 1239
20Cr-25Ni-Nb stainless steel
 cold work effect, 719-720
 cycle shape effect on fatigue, 722-723
 cyclic stress-strain response, 719
 grain size effect on fatigue life, 718-719
 intergranular creep cavitation, 724
 Manson-Coffin plot, 713-715
1Cr-18Ni-9Ti
 chemical composition and mechanical
 properties, 1134
 observed versus predicted lives, 1141
 strain energy partitioning life relationships, 1138
Cu-2Al
 dislocation structures, 65-66
 stress-strain curve, 67
Cu-4Al
 dislocation structures, 67-68
 stress-strain curve, 68
Cu-8Al
 dislocation structures, 67-68
 incremental-step test, 72
 multiple-step test, 71
 plastic-strain limit test, 71
 saturation stress, 74
 slip band spacing and alternating plastic
 strain, 68, 73
 stress-strain curve, 69
Cumulative damage, 1144
Kettunen and Kocks relationship, 89
linear plot for life in time and in repeated
 cycles, 255
Cumulative damage law, 236
 application, 540-541
 life in time and in repeated cycles, 248,
 250-251
Cumulative fatigue damage, 15
Cumulative fatigue theory, 30-31
 new damage equation, 34-35
Cycle ratio, 757, 761
 crack length, 1193
Cyclic behavior, 107
Cyclic constitutive behavior, 692
Cyclic crack growth relation, 209
Cyclic creep test, creep-fatigue life prediction, 505–506
Cyclic deformation, 1218–1235
- applications in automotive design, 1231–1234
- crack propagation simulation, 1225, 1227–1231
- cycle stress-strain response, 1218
- interactive load history, 1231–1233
- modelling
 - material memory behavior, 1221–1223
 - using push-down list counting, 1223–1227, 1234
- monotonic boundary points, 1223–1224
- notch effects analysis, 1225, 1228
- phenomena, 1220–1221
- rheological spring-slider model, 1218–1219
- stress, fatigue mechanism map, 524, 526–527
Cyclic hardening, 519–520, 527, 638–639, 1099
- aging treatment effect, 802, 805
- aluminum alloys, 95
- B-1900 + Hf, 642, 645, 650–654
- 2.25Cr-1Mo steel, 924–926
- 9Cr-1Mo-V-Nb steel, 108–111, 121
- dislocation structure, 74
- duplex stainless steel, 814–815
- face-centered cubic alloys. See Face-centered cubic alloys
- kinematic, FEM analysis, 1072, 1074–1075, 1077
- MARC-type combined, 1073, 1076
- material properties, 1221
- polycrystalline 316L stainless steel, 440–441, 443
- simulation under strain control, 134
- single-crystal 316L stainless steel, 443–445, 450
- 304 stainless steel, 133
- 316L stainless steel, 800
Cyclic hardening exponent, 211, 229
- aluminum alloys, 104
- singularity values, 1061
Cyclic J-integral, 257, 264, 995
- crack growth rate, 978, 980
- strain intensity factor range, 260–261
Cyclic load, 1096
Cyclic load-notch stress range, 1017–1019
Cyclic plasticity, 399
Cyclic plastic strain range, maximum, 1193
Cyclic plastic stress-strain response, 2.25 Cr-1Mo steel, 55
Cyclic 0.2% proof stress
- surface as function of temperature and strain rate, 523
- temperature dependence, 520, 522
Cyclic relaxation test, creep-fatigue life prediction, 503–505
Cyclic saturation stress-strain curves, single-crystal 316L stainless steel, 445
Cyclic softening, 519–520, 527, 577, 838, 978
- aging treatment effect, 802, 805
- B-1900 + Hf, 642, 645, 650–654
- 2.25Cr-1Mo steel, 924–926
- duplex stainless steel, 814–816
- material properties, 1221
- TC6 titanium alloy, 843
Cyclic strain amplitude, versus life curve, 86–87
Cyclic stress range behavior, effect of tension hold times, 473, 476
Cyclic stress-strain response, 43, 257, 267, 1007, 1015
- aluminum alloys, 95, 97
- analytical expression for service set, 929
- basic and service, 930–931
- B-1900 + Hf, 654
- cast steel, 1148
- 2.25Cr-1Mo steel, 924, 927–928
- 20Cr-25Ni-Nb stainless steel, 719
- creep-fatigue life prediction, 510–511
- 9Cr-1Mo-V-Nb steel, 116
- cyclic deformation, 1218
- different temperatures, 45, 47
- duplex stainless steel, 816
- hysteresis loops, 1252
- magnesium-aluminium alloy, 721
- nickel-based superalloys, 457–458
- Ni-Co-Cr-Al-Y coated PWA 1480 superalloy, 375
- OFE copper, 151, 153
- parameters, 932
- plastic-strain limit-test, 59
- René 80, 463, 695
- review of experimental data, 639–640
- SAE 1038 steel, 79–80, 82–84
- S10C steel, 274
- S35C steel, 274
- SNCM 439 alloy steel, 274
- 316 stainless steel, 713, 715, 717
- 316L stainless steel, 800, 803
- thermomechanical fatigue, 638–655, 661–662
- isothermal cycling, 646–647
- variable amplitude straining, 929–932
- weight of points, 935, 936
Cyclic stress-strain test, 693
Cyclic stress-strain-time response. See Constant amplitude straining
Cyclic yield stress, temperature dependence, 45, 49
Damage, 487, 1237
accumulation, 751
creep-fatigue interaction, 545, 548
per block/cycle, 1017
definition, 144
equation, new, cumulative fatigue analysis, 34-35
function method. See Ostergren model
mechanisms, 638, 745, 1253
model, nonlinear. See Nonlinear history-dependent damage model
monitoring system, 981
postulate, 147, 149
rate equation, 497
rule, 979
Damage analysis, 143-144
concepts and assumptions, 144-146
procedure, 145
Damage curve approach, 15, 34, 156
Damage development, 874-897
background, 876-877
related life cycle, 882
damage state as function of ratio of applied moments and life regime, 892-894
intermediate to long life load cases, 885-888
macroscopic growth behavior, 892-893
material, 877
notched shaft, 878, 885, 896-897
short life load cases, 886, 890-892
similitude assumptions, 875
thin-wall tube, 877-885, 892, 894-895
Damage parameter, 993
definition, 144
evaluation, 507-509
history-dependent, 156
primary, 901
semiempirical, 994
time-dependent, 494-495
time-independent, 493-494
D-c potential drop method, 1083
Dead-load creep machine, 285
Decohesion zone, 469
Deep crack, growth, 227-229
Defects, 972
size
and fatigue life, 980
tolerance, 233
Deformation
1070 steel. See 1070 Steel, under thermal loading
theory, 1049
work density, 1213
Diametral strain, 259, 577
controlled fatigue tests, 162
maximum amplitude, 923-924
versus fatigue life, 928, 933
mean, 416
relaxation rate, versus stress drip, 45, 49-50
versus stress amplitude, 45, 48
Diffusion-controlled cavity growth, 437
Directional coarsening, 638, 647, 652-653
Dislocation
behavior, 812
cell after creep-fatigue, 549-550
size and alternating plastic strain, 66, 72
partial, 653
spacing, 578
tangling, 73, 549-550
Dislocation structure, 776
B-1900 + Hf, 650-652
change due to cyclic straining, 522, 525
copper, 65-66
copper alloys, 65-648
cyclic hardening, 74
fatigue mechanism map, 524, 526-527
relaxation, 629
unaged C-alloy, 789, 792-793
unaged N-alloy, 779, 781
Waspaloy, 730, 734, 736-737, 741, 744-745
Dog-leg cycle, 630
Double-damage curve analysis, 34
Double edge notched specimen, 237-238
Double-linear damage rule, 15, 34, 934, 937
Ductility, exhaustion of, 161
Ductile refractory alloy, comparison of bithermal and thermo-mechanical fatigue behavior, 631
Ductile-type fracture, 60Sn-40Pb solder, 349
Ductility, 1048, 1050
loss
fatigue life effects, 168-170
superposed effects of microcracks, 170-171
316L stainless steel, 806
strain aging ferrous alloys, 779-780
Duplex microstructure, slip bands, 846
Duplex stainless steel, 812-822
aging, 822
behavior in 3.5% NaCl solution, 818, 820-821
chemical compositions, 813
crack initiation, 817-818
sites, 814
cyclic deformation, 815-817
cyclic stress-strain response, 816
experimental procedure, 813
hardening/softening curves, 814-815
Manson-Coffin relationship, 813-814
Duplex stainless steel (cont.)
mechanical results, 813-814
plastic strain amplitude effect on fatigue life, 822
twinning, 815-817
Dwell time, 414, 437

E

ECD
chemical composition, 534
experimentally determined parameters, 536-537

Eigen strain
grain boundary, 617
inclusion D₀, 614-616
Elastic core, 496-497
Elastic-plastic finite element analysis, notch specimen, 1007-1008
Elastic-plastic strain-stress analysis, 1022
FEMFAT, 1000-1003
Elastic strain energy distribution
ahead of penny shape crack, 1028
ahead of through crack, 1029
consequences of energy density equivalence
near blunt notches, 1041, 1043-1045
near crack tip, 1034-1036
crack plane, 1025-1026
elastic
near blunt notches in plane stress, 1036-1037
near cracks, 1025-1027
elastic-plastic
near blunt notches in plane stress, 1037-1038
near cracks, 1027-1029
equivalent strain energy density hypothesis, 1030-1034, 1038, 1040-1041
grain boundary, 612-614
near-tip local stresses, 1026
number of cycles to failure, 528
Elastic stress
distribution
ahead of edge notch, 1039
notch, 1147-1150
gradient, 1147
Elastic stress concentration factor, 1078
number of cycles to failure as function of, 1083, 1087
Electrohydraulic closed-loop testing system, 44
Elevated temperature, 123, 313, 519, 543, 611, 692, 728, 798, 961, 972, 1066, 1199
constant amplitude straining, 43-56
cyclic stress-strain-time response. See Constant amplitude straining
fatigue-creep, 470

F

Face-centered-cubic alloys, testing method effects, 58-75
experimental methods, 60-62
see also Multiple-step test; Plastic-strain limit test
Failure behavior, 331
Failure life, correlation between experimental and calculated, 166-167
Failure mode
Ni-Co-Cr-Al-Y coated PWA 1480 superalloy, 380, 382
Waspaloy, 745
Fatigue, 329, 399, 531, 611, 711, 765
combined with creep, 114-119
compression and compressive overload effects, 173-182
materials, equipment and test techniques, 174-176
smooth specimen design and dimensions, 175
crack-tip opening displacement due to, 317 cycle
plastic strain components, 590-591
shape effect, 722-723
fatigue aged C-alloy, 789-791
high frequency vibrations, 963-965
mechanisms, 812
models, 456
notch factor, 1146-1147
keyhole specimen, 1152
notched strip specimens, 1152
propagation life, TC6 titanium alloy, 844
properties, 776
fatigued and aged N-alloy, 784-787
unaged N-alloys, 778-784
rate, 588
softening, 43, 55
SAE 1038 steel, 83-84, 88
stages, 988
strength, anisotropy, 1181, 1195-1197
striations, 946, 950, 954
Ti 6-4 alloy, 946
temperatures above 0.5 T_m, 528-529
temperatures below 0.5 T_m, 528
test
notched strip specimen, 1149-1151
304 stainless steel, 237, 239
time-dependent, 15, 1133
toughness, aluminum alloys, 103-104
unaged C-alloy, 787-789
Fatigue analysis
FEMFAT, 996-997, 999
notch analysis concepts, 990-995
Fatigue-creep, 470
crack propagation characteristic, 540
interaction map, 531-532
tests, 1096
Fatigue damage, 314, 1181
coefficients, AL-0.97Mg alloy, 855-856
crack length, 1193-1194
defined, 10
energy-based criterion, 1256-1258
1070 steel. See 1070 Steel, under thermal loading
Fatigue ductility coefficients, 102, 104
Fatigue failure, 160
austenitic stainless steel, 717-720
cold work effect, 719-720
grain size effect, 718-719
test temperature effect, 716-717
magnesium alloy, 720-722
mechanism, 712-716
crack initiation, 712
crack propagation, 712-713
endurance of crack initiation and propagation phases of failure, 713-716
see also Fatigue life
Fatigue hardening-softening curves, 55, 77, 86, 88
2.25 Cr-1MO steel, 45, 47
SAE 1038 steel, 83-84
Fatigue J-integral range, 1163
versus crack propagation rate, 1170
Fatigue life, 43, 77, 776, 1022-1045, 1144-1161, 1199
aging treatment effect, 802, 804
AISI H13 hot-work tool steel, 583, 585-587
compressive stress, 177-178
constant lines, biaxial stress, 862
crack length, 1044
crack size, 882
creep fatigue, 418
2.25 Cr-1MO steel, 55-56
curve derivation, 267-278
versus cycle frequency, 51-52, 346-347
in cycles, 137
cyclic strain amplitude, 86-87
definition, 664, 1117
ductility loss effects, 168-170
versus effective strain, 864
environmental degradation, 340
equation, 1163
experimental and predicted, 323-326, 1109-1110, 1156-1159
fraction, secondary crack density, 422
frequency and coating influence, 562
frequency dependence, 351
versus frequency/strain range, 597, 606
fully reversed cycles, 180-182
inverse relationship with matrix creep, 588
isothermal and thermo-mechanical fatigue, 670
linear damage rule, 1153-1154
load-strain model, 1154-1156, 1158-1159
load versus strain at equivalent characteristic length, 1157
matrix creep, 598, 600, 604, 608
maximum diametral strain amplitude, 928, 933
mean strain dependence, 752-753
microcrack propagation law, 1188-1189
modified Neuber's rule, 1153, 1158-1159
Ni-Co-Cr-Al-Y coated PWA 1480 superalloy, 377-379
normalized, versus normalized prestrain, 169, 171
notched components, 992-993
oxygen pressure effect, 567
p-change effect, 515
plastic strain amplitude effect, 822
polycrystalline 316L stainless steel, 441, 444-445
predicted, 276-278, 932
pre-oxidation effects, 1213-1215
SAE 1038 steel, 85
single-crystal 316L stainless steel, 445, 448, 451
316L stainless steel, 801, 804
stress, 963-964
stress amplitude, aluminum alloys, 101
surface as function of temperature and strain rate, 524
TC6 titanium alloy, 851
Fatigue life (cont.)
temperature and strain rate dependence, 522-524
thermo-mechanical blocking loading, 191-192
thermo-mechanical constant amplitude, 190
total grain boundary creep, 598, 607
total plastic energy, aluminum alloys, 101
total plastic work per cycle, 1101
total-strain-range, creep-fatigue cycle, 332
variable amplitude load spectra, 1157
variable amplitude straining, 929, 932-934
see also Creep-fatigue interaction; Fatigue failure
Fatigue life laws
comparison of derived laws with existing laws, 1173
cycle-dependent fatigue, 1164, 1169
smooth specimen, 1164, 1169, 1172-1173
time-dependent fatigue, 1169, 1173
verification, 1173-1175
Fatigue loading, Inconel 625, 476-478
Fatigue mechanism map, 519-529
change in dislocation substructure due to cyclic straining, 522, 525
cyclic deformation stress and dislocation substructures, 524, 526-527
experimental procedure, 520
fatigue life, 527
fracture modes, 524, 526-527
temperature
above 0.5 T_m, 528-529
below 0.5 T_m, 528
strain rate dependence of fatigue life, 522-524
Fatigue resistance
austenitic stainless steels, 438
bulk and surface control, 148
defformation history dependence, 156
OFE copper, 151-152
predicted and observed, 155-156
316L stainless steel, 807-808
transient flow behavior, OFE copper, 151-152
Feltner and Landgraf strain resistance prediction criterion, 85
FEM analysis, 672, 987, 1007, 1048, 1053, 1056, 1066, 1100-1102, 1144, 1146-1147
constitutive relation, 1071
constitutive equations, 1079
cyclic, and strain measurement, 1067-1078
elastic-plastic-creep, cyclic loading, 1067-1082
equations, René 80, 701-702
finite element mesh, 1070, 1079, 1101
kinematic hardening, 1072, 1074-1075, 1077
MARC, hysteresis loops, 1102
MARC-type combined hardening, 1073, 1076
monocrystalline superalloys, 681-682
notch strain
plane strain, 1011
plane stress, 1010
original and improved meshes, 1075-1078
predicted and experimental fatigue lives, 1089, 1092
programs for cyclic analysis, 1067-1068
specimen
dimension, 1053, 1055
plane strain, 1010
plane stress, 1009
stress/strain concentration factors, monotonic loading, 1079-1082
test specimen, 1069
FEMFAT, 987
application, 997-998
elastic-plastic multiaxial stress/strain behavior, 1000-1003
elements, 996
fatigue analysis, 996-997, 999
stress/strain analysis, 995-996
Ferritic Fe-26Cr-1Mo-5Ni alloy
cyclic deformation, 814-815
dislocation structures, 821
stress-strain response, 820
twinning, 815, 819
Ferritic-pearlitic steels. See SAE 1038 steel
Ferrous alloys. See Strain aging ferrous alloys
Fibrous precipitation, 549-551
Fixed plastic strain range, 588
Flow stress, 577
B-1900 + Hf, 653-654
Fractography, 961
austenitic stainless steels, 416, 419-427
equiaxed cast superalloy, 831-834
316L stainless steel, 805, 809
Fracture, 1237
factory roof, 901
macroscopically flat, 915-916
mechanics, 281, 282
SEM, 538-539
surface, 554
morphologies, high frequency vibrations, 966-967
316L stainless steel, 806-808
toughness, aluminum alloys, 103-104
Fracture life
versus parameter $T(\log t_p + C)$, 244, 247
temperature dependence, 242, 245
Fracture mode, 524, 526-527
René 95, 302
variation with mean strain, 760

Waspaloy, 305

Franklin's cyclic creep damage equation, 1122-1123, 1125

Frequency-modified damage function, 393-395

Frequency-modified low-cycle fatigue, 365-367

Frequency separation, 1133

life predictabilities, 1142

life prediction equations, 1136, 1138

model, 393-394

Future directions, 7-12, 15-39, 1197

constitutive behavior emphasis, 28-30

cumulative fatigue theory, 30-31

new damage equation, 34-35

drive to organize meetings and symposia, 24-25

emergence of China and other Asian technologies, 25-26

emphasis on fundamentals, 27

generalized Neuber equation for notch analysis, 32, 34

improved formulation for treating mean stresses, 34, 36-37

modified universal slopes equation, 31-32

new materials, 26-27

next twenty-five years, 16-17

potential report proliferation, 17-20

predicting bending fatigue from axial fatigue data, 31-33

thermo-mechanical fatigue, 37-38

t ime-effects on strainrange partitioning components, 38-39

G

GH36

c hemical composition and mechanical properties, 962, 1134

observed versus predicted lives, 1141

strain energy partitioning life relationships, 1139

GH33A

c hemical composition and mechanical properties, 1134

observed versus predicted lives, 1140-1141

strain energy partitioning life relationships, 1139

Gibbs-Thomson equation, 579

Grain boundary, 838

B-1900, 829

carbide formation, 746

cavitation, 554-555

cavity nucleation and growth, 313

chemistry, nickel-base superalloys, 295-297, 303-304

cohesive strength, 458-460

cr eep, 595

fatigue life, 598, 607

cavities, 726

rate, 591

def ormation, fatigue aged C-alloy, 791, 795

diffusion, 615

diffusion coefficient, 1210

embrittled, 747

equaiaxed cast superalloy, 828-829

oxidation, 1199-1216

activation energy, 1211

aspect ratio, 1206, 1210

channeled one-dimensional flow model, 1209-1210

cone-type oxide, 1206

cross-sectional micrograph, 1201, 1203, 1205

fatigue reversals as function of deformation work density, 1214-1215

line profiles of Ni, Cr, and Al, 1201, 1204

oxide depth, 1206, 1208

oxygen concentration, 1209

pancake-type oxide, 1207

parabolic rate constant versus inverse absolute temperature, 1201-1202

penetration, 1205-1213

pre-oxidation effects on fatigue life, 1213-1215

relationship between weight gain and oxidation exposure time, 1201

specimen configurations, 1214

spectrometric analysis, 1204

surface oxidation, 1200-1205

Weibull plot, 1208

oxygen penetration along, 303

power law expression, 590

sliding, 555

Waspaloy, 731

Grain-boundary crack initiation, 611-621

calculation of elastic strain energy and internal stress of grain boundary, 612-614

critical shear strain, 617

critical strain, 616-617

diffusion flux, 615

flux of atoms, 615

high temperature fatigue, 617-619

internal stress and eigen strain in inclusion

D_0, 614-616

migration rate, 615

number of cycles, 619-620

shear strain change, 617-618

stress field outside inclusion, 616

Stroh's equation, 616

wedge-type cracking, 616, 618

Grain boundary creep, 588
Grain-boundary sliding, 29, 529, 611, 619
blocking of, 614
model, 617
Grain size, 605
Al-Mg-Si alloys, 766
9Cr-1Mo-V-Nb steel, 109
fatigue life effect, 718-719
precipitates, 711
Granulated-type fracture, 60Sn-40Pb solder, 350
Gray cast iron, 899
cracking behavior, 910-912
tension and torsion behavior, 913, 915
Growth law, 125

H
Haig diagram, 942, 945, 947, 949
Ti 6-4 alloy, 942, 945
Hardening rule, 865
High-cycle fatigue, 861, 961
amplitude effect, 969-970
High deformation fatigue, 77-92
High frequency vibrations, 961-970
effect of amplitude of high cycle fatigue stress, 969-970
experimental procedure, 961-963
fatigue behavior, 963-965
fatigue crack paths, 965
fracture surface morphologies, 966-967
geometry of specimens, 962
load spectra, 963
High-strain fatigue crack propagation, 456
High temperature alloys, 209
crack growth rate, 227
High temperature fatigue, 385, 456, 558, 657, 1115, 1096, 1237
grain-boundary crack initiation, 617-619
nickel-base ODS alloy, 386-392
316L stainless steel, 802-803, 805
see also Elevated temperature
High-temperature low-cycle fatigue behavior
life prediction, 1117-1120
Historical perspective, 5-6
Hold time, 43, 399, 415
compression, 470, 473, 476
cycles to failure, 436
initiation stage, 423
life prediction, 403-405, 410-411
number of cycles to failure, 417
relaxation during, 545, 549
strain, 51-52
stress, 53
tensile, fatigue life effect, 722-723
tension, 470, 472-473, 475-476
Hollomon equation, 464
Hot isostatic pressing, 824-825
equiaxed cast superalloy, 834-836
microstructure, 826
HP-45, 1097
Manson-Coffin relation, 1106
materials property, 1105
notch test, 1108
HP-IP steam turbine rotor, 1237-1259
cavitation, 1250, 1252
creep resistance curves, 1239
damage mechanisms, 1253
distribution of heavily segregated zones, 1244
endurance, 1247-1248
energy-based criterion, 1256-1258
experimental procedure, 1242, 1246
hardness, 1249
inclusions at rotor bore, 1243
interaction between cavitation and crack growth, 1254
linear damage summation rule, 1252-1253, 1255-1256
material, 1238-1242
material effect, 1246-1249
microstructure, 1238, 1240-1241
parameters, 1245
role, 1251-1252
strain-range partitioning, 1252-1253, 1256-1257
time effect, 1249-1250
total strain energy density, 1258
HRR singularity, 1049
Hull-Rimmer model, 316-317
Hypersurfaces, 1001-1002
Hysteresis loop, 209
Al-Mg-Si alloys, 768
aluminum alloys, 94
B-1900 + Hf, 642, 644
creep-fatigue life prediction, 504
distortion, 628
hold position effect during tensile loading, 138
initial prestrain cycles, 176
inside, 505-507
isothermal fatigue, 591
kinematic hardening, 1072, 1074-1075, 1077
load-displacement, 694
load-strain, 1155
MARC finite element program, 1102
MARC-type combined hardening, 1073, 1076
with 10-min relaxation periods, 127, 129
percent creep, 363
produced by block loading, 117
SAE 1038 steel, 80
shape, 94–95, 105, 1220
 crack growth, 220
 variation, 100
slow/fast and fast/slow loadings, 128
solder joints, 591
square wave, 597, 601, 603
steady-state, 128
triangular wave, 597, 600, 602
within hysteresis loops during strain-controlled loading, 130–132

I
lida's formula, 166
IN-739, 639
IN100, 658
crack depth variation with number of cycles, 664–665
crack initiation, 668
 life versus total mechanical strain range, 669
cyclic life, 468–469
failure criterion, 462
Hollomon equation, 464
intergranular crack propagation path, 459
Ludwik equation, 464
main crack evolution, 662–663
number of cycles, 666–667
stabilized stress-mechanical strain loops, 662
Inclusion, 972
HP-IP steam turbine rotor, 1243
Incoloy 800, 1097
 Manson-Coffin relation, 1106
 materials property, 1105
 notch test, 1108
Incoloy 800H, 501, 1097
 Manson-Coffin relation, 1105
 materials property, 1105
 notch test, 1108
Inconel, 899
Inconel 625, 470–485
 chemical composition, 471
 comparison of predicted and observed life, 483
 continuous cycling, 471–473
 creep loading, 478–479
 experimental procedure, 471
 fatigue diagram, 472
 fatigue loading, 476–478
 high-temperature stability, 485
 hold time fatigue test, 474
interspersed creep-fatigue tests, 472–477
interspersed fatigue-creep, 479–482
isothermal creep-rupture curve, 478–479
life prediction, 476–482
strain parameters, 477
stress range variation, 471, 473
stress relaxation, 480–481
 rate, 472–473, 425
Inconel 718, 939
biaxial strain controlled fatigue tests, 867, 869
correlation with shear strain parameter, 916–918
cracking behavior, 905–908
crack initiation, notched specimen, 951–953
crack propagation, 955–958
fatigue striations, 950, 954
Haig diagram, 947, 949
mechanical properties, 902
number of cycles to failure, 947–950
strain range partitioning, total-strain version, 337–338
Incremental damage accumulation law, viscoplasticity based on overstress, 135–136
Incremental dwell test, creep-fatigue life prediction, 503–505
Incremental-step test
copper, 70
Cu-8Al, 72
cyclic hardening, 60–61
SAE 1038 steel, 81–82
saturation stress, 74
Induction heating, 672–673, 690
 apparatus, 675
Inelastic analysis, 399, 407–408
 constitutive equation, 405
 creep properties, 408
 plastic properties, 408
Inelastic finite element analysis, 692
Inelastic strain range, 492
 number of cycles to failure, 1117–1118, 1178
 number of cycles to initiation, 1118–1119
 viscoplasticity based on overstress, 124
Inelastic volume fraction
development of surface damage, 147
similitude, 146–147
Inside hysteresis test, creep-fatigue life prediction, 505–507
Instrom Corp., financial growth, 23
Interaction damage rule, 53, 363, 1136
Interactive load history, 1231–1233
Intercrystalline voids and cracks, 609
Interdendritic damage fraction, as function of maximum stress, 536
Interference plane, definition, 867
Intergranular cavities, 556
Intergranular crack, 185, 301, 414, 711
austenitic stainless steels, 422, 424
Intergranular crack (cont.)
- path, 459
 - creep-fatigue interaction, 314
- polycrystalline 316L stainless steel, 449
 - propagation rate, 425, 427
 - transition to transgranular, 454-455
- Intergranular creep, cavitation, 20Cr-25Ni-Nb stainless steel, 724
- Intergranular damage, 415, 422-423
 - creep-fatigue interaction model, 435
 - versus creep life, 430
 - evolution, 425
 - factor of crack propagation reduction, 424, 426-427
 - stress relaxation, 428-429
- Intergranular damage law, incremental, 429
- Intergranular decohesion, 469
- Intergranular fracture, 313, 519, 543
 - due to creep damage, 322
 - 316L stainless steel, 809
 - 60Sn-40Pb solder, 352-353
- Intergranular fractures, oxygen, 368
- Intergranular precipitation, 316L stainless steel, 809-810
- Intermetallic, 60Sn-40Pb solder, 351, 360-362
- Internal crack, 751
- Internal stress, 616
 - grain boundary, 612-614
 - inclusion D_o, 614-616
- Interspersed creep-fatigue tests, Inconel 625, 472-477
- Interspersed fatigue-creep damage evaluation, 479-480
 - life calculation
 - compression hold times, 482
 - tension hold times, 481-482
 - loading pattern, 481
 - stress relaxation, 480-481
- Interstitial nitrogen, 316L stainless steel, 805-807
- Interstitial solutes, 776
- Isochronous stress, versus strain, 112-113
- Isothermal constant amplitude loading, stratified oxide layers, 193, 198
- Isothermal cycling, stress amplitude, 118
- Isothermal fatigue, 184, 1163
 - stresses, 191, 193-196
 - low-cycle fatigue, comparison with thermomechanical fatigue, 665-666, 668

\[K \]

Kettunen and Kocks relationship, 77, 88-89
- engineering alloy values, 91
- SAE 1038 steel, 89-90
- versus saturation stress amplitude, 90

\[L \]

Kinematic hardening, FEM analysis, 1072, 1074-1075, 1077

Koe's equation, 1086
- predicted and experimental fatigue, 1090-1091

J

\[J \]

J-integral, 1163

Journals, proliferation, 21
René 80, 697–698
rupture life, 541
304 stainless steel, 496
strain range partitioning, 1120–1121
strain-rate effect, 403–404, 410–411
stress-hold ond strain-hold data, 336, 338
thermal fatigue, 1126–1129
variable strain, 981–982
viscoplasticity based on overstress applica-
tion, 133–136
Linear damage cumulation rule, 958–959, 1041
derivation, 983
Linear damage rule, 366, 495–496, 1120, 1136
fatigue life estimations, 1153–1154
Linear damage summation rule, 1257, 1237
hold-time tests, 1255
HP-1P steam turbine rotor, 1252–1253, 1255–1256
Linear elastic fracture mechanics, 209, 225
ratchetting, 232
Load-controlled test, 209
compared with strain-controlled data, 231
increased displacement range, 231
ratchetting, 230
Load ratios, 939
Load-strain hysteresis, cast steels, 1155
Load-strain model, 1154–1156, 1159
experimental and calculated crack initia-
tion, 1158, 1160
Local stress-strain analysis, notch specimen,
1014–1016
Location parameter, 1207
Low alloy steel, 399
Lüders region, 88
Ludwik equation, 464

M

MA 754 alloy. See Nickel-base ODS alloy
Macrocrack, 886, 981
Macroscopic growth behavior, 892–893
Macroscopic low-cycle fatigue laws, 1181–1197
material and test procedure, 1182–1183
relation between cycle plastic strain range
and number of strain cycles to failure, 1184
specimen geometry, 1183
waveforms for random loading, 1192
Magnesium alloy, 711
fatigue failure, 720–722
Magnesium-aluminum alloy
cyclic stress-strain response, 721
temperature effect on fatigue life, 720–721
Manson-Coffin curve, 44, 55
aluminum alloys, 94
austenitic stainless steels, 547
breaks, 95, 97, 99–100
cycling with hold times, 52–53
different temperatures, 45, 48
20Cr-25Ni-Nb stainless steel, 713–715
316 stainless steel, 713–714, 716–717
Manson-Coffin endurance law, 419
Manson-Coffin equation, 15, 30, 754, 1120,
1188
Manson-Coffin fitting curves, 1246
Manson-Coffin law, 16, 45, 55, 77, 344, 801,
836, 932, 1050
frequency-modified, 342, 344
life prediction, 124
near crack tip in overall plastic deforma-
tion, 1053–1057
validity, 257
Manson-Coffin relationship, 5, 1181–1182
1.25Cr-0.5Mo, 1107
duplex stainless steel, 813–814
furnace cooled and quenched C-alloy, 788–
789
HP-45, 1106
IN100, 462, 464
Incoloy 800H, 1105
nickel-based superalloys, 462–464
René 80, 462–464
solder joint, 589
unaged N-alloys, 778–780
Manson-Coffin strain-life relation, modified, 1041
Manson’s formula, 166
MARC finite element computer program,
1100–1102
MAR-M509, 1115–1116
Mar M247, 1178
Masing’s hypothesis, 1221
Mathematical modeling, 123
Matrix creep, 588–589
fatigue life, 598, 600, 604, 608
power law expression, 590
Maximum stress criterion, 947
Maximum stress life equation, 531–541
cumulative damage rule application, 540–
541
experimentally determined parameters,
536–537
fatigue-creep crack propagation, charac-
teristic, 540
fracture appearance, 538–539
interdendritic damage fraction, as function
of maximum stress, 536
materials and procedures, 533
maximum stress effect, 533, 535–540
modified, 533, 536–537, 540
Maximum stress life equation (cont.)
rupture life
versus predicted life, 541
dependence, 535
strain rate effect, 535
Mechanical behavior of materials, milestones, 18
Mechanical strain, 184
as function of time, 641, 643
Memory events, 122-1223
compressive monotonic curve, 1222
effect on listing procedure, 1227
Metallic materials, 257, 1218
polycrystalline, 611
Metallography
austenitic stainless steels, 416, 419-427
TC6 titanium alloy, 839-840
Microcrack, 164, 900, 1164
basket-weave microstructure, 846
fatigue life effects, 170-171
growth law, 1186
initiation, 1181
SAE 1045 steel, 907, 909
SNCM 439 alloy steel, 261
threshold stress for expansion, 459
Widmannstatten microstructure, 844-845
Microcrack propagation, 657, 1181, 1187-1189
experimental and predicted lives, 1193-1195
single-crystal 316L stainless steel, 449, 453
Microcrack propagation law
application, 1192-1197
Miner's rule, 1189-1191
Microfracture, 753-756
mean strain effect, 756-763
mode map, 759
process, 751
surface crack, 755-756
types, 755
Micromechanics model, 611
Microstructure, 94, 711-726, 728, 838, 1237
aluminum alloys, 102
B-1900 after standard heat treatment, 826-827
creep cavitation effect on fatigue endurance, 722-726
creep-fatigue interaction, 549-554
evolution, 1249
hot isostatic pressing, 826
HP-IP steam turbine rotor, 1238, 1240-1241
mechanical properties, 824
parameters, HP-IP steam turbine rotor, 1245
role, HP-IP steam turbine rotor, 1251-1252
60Sn-40Pb solder, 351, 354-360
TC6 titanium alloy, 839-840
Widmannstatten, 839-840, 844-845
see also Fatigue failure; Waspaloy
Miner's rule, 180, 190, 1181-1182
derivation, 1189-1191
Mismatch hoop strain, 1070 steel, 200, 202
Mixed fatigue
definition, 942
Inconel 718, 957
prediction models, 958-959
Ti 6-4 alloy, 951, 955
Modified universal slopes equation, 31-32
Modulus, 9Cr-1Mo-V-Nb steel, 121
Modulus of elasticity, 1037
Modulus function, 125
Mohr's circles of strain, 868
Monitoring, 10-11
Monkman-Grant rule, 1123
Monocristalline superalloys, 672-691
alloy composition, heat-treatment and coating, 673-674
chemical composition, 674
circumferential stress-strain history, 684-685
coating degradation, 686-690
finite-element model, 681-682
material properties, 681-683
stepped-disk specimen, 674
temperature history, 678-679
temperature history, 678-679, 682
test apparatus, 674-680
test specimens, 673-674
thermal fatigue tests, 680-681
thermoelastic finite-element analysis, 682-690
Monotonic stress-strain response
aluminum alloys, 95, 97
OFE copper, 151, 153
SAE 1038 steel, 83-84
316L stainless steel, 800, 803
Mróz form circles, 1001
Mróz model, 1000-1003
Mróz segment, 999, 1001
damage, 1003-1005
elastic-plastic, 1003-1004
hysteresis loop, 1003-1004
MTS Systems Corp., financial growth, 23
Multiaxial fatigue, 861-871, 899
critical plane concepts, 866-869
damage development, 874-897
effective/Equivalent concepts, 862-865
future directions, 869-871
material anisotropy, 873
model, 895
plastic work, energy concepts, 865-866
stress states, 987
theories, 916
 cracking behavior, 901
Tresca criterion, 863–864
von Mises criterion, 863–864
Multiaxiality, 30
Multiple-step test
copper, 70
Cu-BAI, 71
cyclic hardening, 60
prestrain, 73
SAE 1038 steel, 80

N
NaCl solution, duplex stainless steel, behavior, 818, 820–821
Neuber correction, 15
Neuber equation, generalized, notch analysis, 32, 34
Neuber hyperbola, 512–513
Neuber notch strain analysis, 1107, 1099–1100, 1109
Neuber relationship, 1227
Neuber's model, modified, 1158–1159
 crack initiation lives, 1159
 experimental and calculated crack initiation blocks, 1158
Neuber's rule, 1007–1020, 1083, 1099, 1144, 1153
 application, 1100
 crack initiation, 1089
 extension, analogous formulation, 1015
FEM analysis, 1081–1082
 modified, 1153
 notch analysis, 1015–1016
 plane strain, regression, 1012
 plane stress, regression, 1011
 predicted and experimental fatigue lives, 1089
 proposed extension, 1009–1014
Nickel-base alloys, 555, 625, 938
Nickel-based superalloys, 27, 293–309, 329, 672, 692, 728, 1199–1200
 background, 457
 crack growth, 459
 rate, 460–461
 comparison of alloy behaviors, 307, 309–310
creep-fatigue-environment study, 294–295, 297–303
cyclic stress-strain response, 457–458
 grain boundary chemistry, 295–297, 303–304
intergranular crack propagation path, 459
 life prediction model, 457–464
modified compact tension specimen design, 295
oxidation, 468
quasifracture mechanics failure criterion, 458
thermomechanical fatigue, 657–669
see also specific alloys
Nickel-base oxide dispersion strengthened alloy, 385–398
 experimental procedure, 386–387
 fatigue life, 397
 frequency-modified damage function, 393–395
 frequency-separation model, 393–394
 high-temperature low-cycle fatigue, 386–392
 inelastic strain range versus number of cycles to failure, 388
 lifetime prediction models, 392–396
 numbers of cycles to failure, 394–396
 specimen, 386
 strain range partitioning, 395–396
 strain wave with compression hold time, 390
 sensitivity, 394
 with tensile hold time, 391–392
 triangular strain wave, 388–390
Ni-Co-Cr-Al-Y coated PWA 1480 superalloy, 371–383
 coefficients for models, 378
 constitutive behavior, 375–377
 cyclic life, 379, 381
 cyclic stress-strain behavior, 375
 failure mode, 380, 382
 life behavior, 377–379
 life model, 379–381
 low-cycle fatigue data, 374
 materials, 372–373
 stress-strain-time behavior, 376
 superalloy-coating interface, 384
 test procedures, 373
 values of constant ALPHA, 380
Nimonic 80, cavitation, 555
Nitrogen
creep-fatigue interaction effect, 543–556
 interstitial, 316L stainless steel, 801, 805–807
Nitrogen steels, 798
Nonlinear history-dependent damage model
 based on bulk control, 147, 149–156
 damage postulate, 147, 149
 experimental aspects, 147, 149–151
 inelastic volume fraction and surface damage development, 147
 model framework, 151, 153–154
 similitude and inelastic volume fraction, 146–147
Notch, 1007, 1022, 1144
 elastic stress distribution, 1147-1150
 sensitivities, 1151
Notch analysis, 500, 513, 987
 analytical expressions, 991
 Creager and Paris stress field, 1031-1032
 equivalent strain energy density hypothesis, 1038, 1040-1041
 fatigue analysis on small and medium size computers, 990-995
 generalized Neuber rule, 1015-1016
 parameters, 1018
 welds, 992
Notched shaft
 AISI 4340 steel, 901
 damage development, 878, 885, 896-897
 stress gradients, 897
Notched specimen, 1104
 fatigue life, 992-993
 geometries, 1103
 keyhole, 1148, 1152
 life prediction, 1082-1092
 strip, 1148-1151
 see also Variable amplitude loading, notched components
Notch effect, 209, 215, 874, 900, 1066-1094, 1225, 1228
Notch equation, generalized, 513-514
Notch specimen
 distribution of relative damage, 1160
 local stress-strain analysis, 1014-1016
Notch strain analysis, 1144
Notch stress, variation, 1014
Notch tests, 1096
 strain waveforms, 1098
Notch tip, strain, 1041-1042
 energy density, 1041, 1043
Nucleation, 725
 operational definition, 144
 secondary crack rate, 433

O
Ohji-Miller's hypothesis, 754-755
Orowan looping, 749
Ostergren model, 586-587, 696-697, 1133, 1136
Overstress, 934
 creep and relaxation dependence, 515-516
 inelastic strain-rate dependence, 492
 see also Creep-fatigue, overstress concept application
Oxidation, 185, 340, 438, 1115, 1199
 carbide, 670
 kinetics, 1199
 matrix, 1124-1128
 oxide depth, 1206, 1208
 rate, 574
 surface, 1200-1205
 weight gain during, 1200-1201
 see also Grain boundary, oxidation
Oxidation-fatigue interaction, 558-575
 crack depth versus cycles, 563
 crack growth model, life prediction, 1124-1128
 helium environment, 567-568
 mechanisms, 568-572
 oxidation depths versus time, 572
 oxygen-enriched environment, 560, 566-567
 oxygen pressure role, 569
 role of cycle period crack initiation, 569, 572-573
 crack propagation, 573-574
 strain-controlled test, 561
 surface cracking progression, 564-565
Oxide cracking, 184, 1199-1200
Oxide structure
 failure, crack initiation acceleration, 197
 isothermal constant amplitude loading, 193, 198
 morphology, 1199
 1070 steel, 193-194
 temperature and strain history, 203
 thermo-mechanical constant amplitude loading, 193-194, 199-200
 zero applied load tests, 194, 201
Oxygen
 critical value, 1209
 oxidation-fatigue interaction role, 569
 penetration along grain boundaries, 303
 Oxygen-enriched environment, 560, 566-567

P
Palmgren-Miner cumulative damage law. See Miner's rule
Parameter C*, 291-292, 1164
 static load test, 288
Paris expression, 299
Paris law, 281
Partitioned strain life relations, 508
Pearlite
 cracked ratio, 757, 760-761
 cracking, 751
 fracture under high deformation fatigue, 77-92
 material and experimental procedures, 78-80
 shear cracking, 758
 strain-hardening, 78, 88
 see also SAE 1038 steel
Plastic compliance, 228
Plastic deformation, 1096
 singularity variation, 1056–1057, 1059–1060
 strain field near crack tip, 1053–1057
Plasticity, 329
Plastic properties, 399, 408
Plastic energy, total, versus fatigue life, 101
Plastic strain
 amplitude variation with number of cycles, 778–779, 784, 788
 associated with opening/closing, 222
 components, fatigue cycle, 590–591
 crack density as function of, 453
 energy density, 1030, 1035
 equivalent, 1031, 1103
 increment, 701
 linear damage cumulative law, 983
 longitudinal amplitudes, 924
 maximum, 1109
Plastic strain-life, polycrystalline 316L stainless steel, 441, 444
Plastic-strain limit test
 copper, 69
 Cu-8Al, 71
 cyclic hardening, 59–60
Plastic strain range, 209
 versus critical number of cycles, 321
 elastic strain range and number of cycles to failure, 528
 versus life data, 262–263
Plastic work
 versus cycle number to crack initiation relationship, 1004
 multiaxial fatigue, 865–866
 total per cycle, 1101, 1110
Plastic zone correction factor, 1026, 1037
Plastic zone depth, 209
Plastic strain rates, 1098
Polycrystals, 438
Porosity, 824
Portevin-Le Chatelier effect, 809
Power-hardening equation, 318
Power law, 935
 equation, 318, 333
 flow data correlation, 334
 hardening material, 1029–1030
 hardening stress-strain curves, 1025
Precipitation hardening, 61, 765
Precrack
 size, 1215
 stage, load sequence effects, 989
Pre-oxidation, fatigue life, 1213–1215
Pressure vessel steels. See 9Cr-1Mo-V-Nb pressure vessel steel, cyclic stress-strain time response
Prestrain, 160
Primary cracks, Waspaloy, 743
Principal plane cracking, Waspaloy, 745–747
Push-down list counting, 1223–1227, 1234
PWA 1480. See Ni-Co-Cr-Al-Y coated PWA 1480 superalloy

Q

QT35, secondary crack, 901
Quantitative metallography, 414

R

Radiant heating, 670–671
Rain flow analysis, 923–924, 929, 1041, 1181, 1219
 interpretation, 1192–1195
Ramberg-Osgood elastic-plastic solid, small crack, 1213
Ramberg-Osgood law, 1027, 1040, 1049
Random fatigue, 1192–1195
Ratchetting, 209, 229–230
 linear elastic fracture mechanics, 232
 load control test, 230
 two-bar creep, 9Cr-1Mo-V-Nb steel, 118–120
Ratio Q, 966–967, 969
Relative Miner rule, 993
Relative notch opening displacement, 236, 241
 definition, 240
 with respect to time, 243
Relaxation, 107
 curve, 410
 during hold time, 545, 549
 isochronous curves, 113
 overstress dependence, 515–516
 rate, 437
René 80
 Besseling’s model, 700–701
 composition, 693
 constitutive theory, 700–701
 cycles to initiation, 699
 cyclic life, 468–469
 cyclic stress-strain response, 463, 695
 data analysis, 694
 failure criterion, 462
 finite element equations, 701–702
 Hollomon equation, 464
 isothermal cyclic stress-strain properties, 697–698
 load-displacement, hysteresis loops, 694
 Ludwik equation, 464
 Manson-Coffin plot, 695–696
 mechanical testing, 693–694
René 80 (cont.)
modeling
procedure, 699-700
results, 702-706
Ostergren approach, 696-697
peak tensile and compressive stresses versus cycle number, 458
predicted versus observed life, 697-698
thermal mechanical cycles, 694
René 95
composition, 294
creep crack growth rate, 298-300
environmental and creep effects on crack growth, 307
fatigue crack growth rate, 298-299
fracture modes, 302
predicted and observed crack growth rates, 301
tensile properties, 294
see also Nickel-base superalloys
René N4, 559, 672
crack growth, 566
crack initiation from oxide pits, 568, 570-571
influence of frequency and coating on life, 562
material properties, 681-683
oxidation depths versus time, 572
oxygen pressure effect on fatigue life, 567
stiffness constants, 681, 693
uncoated
crack depth versus cycles, 563
surface cracking progression, 564-565
Resnucleation mechanism, 838
Residual ductility, 751-752
change during fatigue, 753-756
with strain cycling, 754
cracked pearlite ratio, 763
mean strain effect, 756-763
variation with strain cycling, 762
Residual static fracture ductility, 160
versus prestrain, 164
very low cycle fatigue tensile or compressive prestrain, 163-166
Reuchet-Remy model, 468
Reversing d-c electrical potential method, 7
Rheological spring-slider model, cyclic deformation, 1218-1219
Room-temperature low cycle fatigue, 316L stainless steel, 800-802
Round cavities, 315
austenitic stainless steels, 422, 424
RQC-100
crack initiation life, 1020
strain fatigue properties, 1019
R ratio, 209
variation crack depth, 224

SAE 1038 steel
chemical composition, 79
cyclic stress-strain curve, 79-80, 82-84
fatigue hardening/softening, 83-84, 88
fatigue-life curve, 85
ferritic pearlitic microstructure, 79
heat treatment, 78
hysteresis loop, 80
incremental step test, 81-82
Kettunen and Kocks relationship, 89-90
mechanical properties, 82
monotonic stress-strain curve, 83-84
multiple step test, 80
prediction of monotonic properties, 85
tensile test, 82
work-hardening, 88
see also Pearlite

SAE 1045 steel, 175, 899
chemical composition, 174
compressive overload effects, 180
compressive stress effects, 178
cracking behavior, 907, 909-911
equivalent lives of fully reversed cycles, 182
mechanical properties, 902
region II behavior, 907-911
static tensile properties, 877
tension and torsion behavior, 913, 915
type S crack system, 910
see also Fatigue, compression and compressive overload effects

Saturation
definition, 642
effect, 415
plastic strain range, 89
stress
Cu-8Al, 74
polycrystalline 316L stainless steel, 441-442

S10C steel
cyclic stress-strain response, 274
fatigue life, 276

S35C steel
chemical composition, 258
crack growth rate versus strain intensity factor range, 269
cyclic stress-strain response, 274
fatigue life, 277
heat treatment, 258
mechanical properties, 258
plastic strain range, 262-263
surface crack growth, 262
 versus cyclic J-integral, 264
Secondary crack
 conservation equation, 433
density, 432-434
 continuous fatigue, 434
creep-fatigue, 434-435
distributions, 425-426
nucleation rate, 433
QT35, 901
304 stainless steel, 901
TC6 titanium alloy, 850
Waspaloy, 742
Service failure, 160
Service loadings, 972
Sessler-Weiss’s law, 755
Shape function, 125
Shear cracking, 913
Shear modulus, 577
 versus tensile plastic work, 586
Shear planes, crack initiation, 900
Shear strain, change in fatigue loading, 617-618
critical, 617
Shear-type fracture, 60Sn-40Pb solder, 348
Ship, service failure, 161
Short-crack, 972
Signum function, 135
Similitude, 145
 inelastic volume fraction, 146-147
Sine’s equivalent strain, 1154
Single crystals, 371, 438
Singularity
 values and hardening exponent, 1061
 variation with plastic deformation, 1056-1057, 1059-1060
Slip band, 735-737, 741, 749, 838, 899-900
carbide formation, 746-747
duplex microstructure, 846
equiaxed microstructure, 846
persistent, 900
spacing
 alternating plastic strain, 68, 73
 incremental-step test, 74
 multiple incremental test, 73
strain aging ferrous alloys, 784, 786-787
unaged N-alloy, 782
Widmannstatten microstructure, 844-845
Slip lines
quantification, 853-858
 curves of progressive change, 854
 increase during fatigue tests, 855, 857
 increase during tensile test, 856
 method, 854
 stereographic quantity, 854
quenched C-alloy, 789-790, 792-793
Slope parameter, 1208
Slow load cycling, 285
Small crack, 1048
growth law, 1184
load sequence effects, 990
low oxygen environment specimen, 568
propagation process, 1050-1054
Ramberg-Osgood elastic-plastic solid, 1213
Small crack growth, 257-279, 1182
cyclic J-integral, 260-261, 264
derivation of fatigue life curves, 267-278
initiation and growth behavior, 261-263
materials and experimental procedure, 258-260
plastic strain range versus life data, 262-263
rate versus strain intensity factor range, 265-266, 269-273
specimen schema, 259
strain intensity factor range, 260-261
surface crack growth curves, 262
Small specimen crack growth data, 209-233
 across whole section, 219-224
 crack closure, 220, 223-224
 hysteresis loop shape, 220
 method, 219
 stress-depth variation, 219
aging effect, 215-216
assessment procedure, 232
assessment route, 232-233
conversion to stress-intensity based relations, 224-229
crack growth law, 211-212
notch effect, 215
relation to load control tests, 229-231
remaining life path, 232
strain rate effect, 213-214
test choice, 231
tolerable defect path, 232-233
weld metal, 214-216
see also Crack growth law
SNMC 439 alloy steel
chemical composition, 258
 crack growth rate versus strain intensity factor range, 270-271
 cyclic stress-strain response, 274
fatigue life, 277-278
fatigue microcrack, 261
heat treatment, 258
mechanical properties, 258
plastic strain range, 262-263
surface crack growth, 262, 265-266
60Sn-40Pb solder, 342-368
ductile-type fracture, 349
environmental influences, 368
experimental procedure, 343-344
granulated-type fracture, 350
60Sn-40Pb solder (cont.)
intergranular fracture, 352-353
intermetallic, 351, 360-362
low-cycle fatigue, 344-363
microstructure, 351, 354-360
oxygen effect, 368
percent creep, 363-364
shear-type fracture, 348
strain life, 345
strainrange partitioning, 363-364
Solder, 342
Solder joint
fatigue, 588-609
chip carrier array, 591, 594-595
creep, 589-590, 598-599
holding torque, creep strain, versus time, 596
isothermal mechanical fatigue, torsional apparatus, 592-593
square wave, 597
strain life behavior, 597, 607
strainrange partitioning. See Strainrange partitioning
structural studies, 593-594
triangular wave, 597
fatigue life
frequency/strain range, 597, 606
matrix creep, 598, 600, 604, 608
total grain boundary creep, 598, 607
see also 60Sn-40Pb solder
Solubility limit, 579-581
Solution hardening, 61
Specimen size, 209
Spectrum loading, 1144
Spera’s accumulated creep damage method, 1121-1122, 1124
Stainless steel, 123, 236, 711, 899
cyclic hardening, 58
see also Austenitic stainless steel; specific stainless steels
253MA stainless steel
brittle fracture behavior, 551
chemical composition, 544
dislocation tangles, 549-550
fracture surface, 554
grain boundary cavitation, 555
grain size and hardness, 545
wedge-cracks, 552-553
304 stainless steel
chemical composition, 237, 320, 520
crack branching, 916
cracking behavior, 903-905
crack propagation rate, 1164, 1169
creep-fatigue interaction test, 237, 239
creep test, 237, 239
cycles-to-failure versus time-to-failure, 136, 138
cyclic hardening, 133
fatigue test, 237, 239
identification of material functions, 126-127
life prediction, 496, 1082
maximum principal stress parameter correlation, 917, 919
mechanical properties, 237, 902
number of cycles to failure, 1083, 1086-1087
plate specimens, 1083-1084
region II behavior, 904-905
region III behavior, 904, 906
relative notch opening displacement, 241
round bar specimens, 1083, 1085
secondary crack, 901
shear strain parameter correlation, 917-918
stage I life as function of shear strain amplitude, 904, 907
stress ranges, 132
surface at failure, 904
tension and torsion behavior, 913-914
see also Creep-fatigue, overstress concept application
316 stainless steel, 543
comparison of bithermal and thermomechanical fatigue behavior, 629-630
cracking behavior, 902-905
chemical composition, 415, 544
cyclic stress-strain responses, 713, 715
dislocation cells, 549-550
fibrous precipitation, 549-551
grain size and hardness, 545
main crack path, 553
Manson-Coffin plot, 713-714, 716-717
stress-strain curve, 65
stringer, 905
tensile hold period effect on fatigue life, 722-723
tensile properties, 415
void formation, 552
see also Austenitic stainless steels
316L stainless steel, 438-453, 798-811
aging, 802, 804-805
chemical composition, 439, 799
crystal growth, 439
cyclic deformation, 817
cyclic hardening, 800
cyclic stress-strain response, 800, 803
effect of aging treatment on cyclic hardening-softening curves, 802, 805
experimental procedure, 439-440, 799-800
fatigue life, 801, 804
fatigue resistance, 807-808
fractographic analysis, 805, 809
fracture surfaces, 806-808
high-temperature low cycle fatigue, 802-803, 805
intergranular fracture, 809
intergranular precipitation, 809-810
interstitial nitrogen, 801, 805-807
loss of ductility, 806
mechanical behavior, 800-805
mechanical properties, 439
monotonic stress-strain response, 800, 803
polycrystalline
- crack initiation, 442-443, 446-448
- cyclic stress-strain response, 440-441
- fatigue lifetime, 441, 444-445
- intergranular cracks, 449
room-temperature low cycle fatigue, 800-802
single-crystal
- crack initiation, 448-449, 452-453
- cyclic hardening, 443-445, 450
- fatigue life, 445, 448, 451
- microcrack propagation, 449, 453
- specimen dimensions, 440
- specimen configuration, 799
tensile properties, 800-802
316LN stainless steel
brittle fracture behavior, 551
chemical composition, 544
grain size and hardness, 545
321 stainless steel, strain energy parameters, 1176
Standard deviation, definition, 392
Standards, need for new, 19-20
Static load test, 285
- parameter C*, 288
Static tension tests, 162
Statistical work-hardening theory, 86
Steel
- low alloy, 399
- material properties, 1000
- mechanical properties, 162
- prestrain effects, 160
- transmission loading history geometry, 1041, 1043
1070 steel
- chemical composition, 186
- microstructure, 187
under thermal loading, 184-205
- axial strains, 197, 202
- equipment, 186
- fatigue test results and predictions, 188, 190-191
- material, 185-187, 191-192
- mismatch hoop strains, 200, 202
- oxide structure, 193-194
- test conditions, 186, 188-189
Steel alloy, notch tip strains, 1041-1042
Step function, 135
Stepped-disk specimen, 672-674, 690
temperature history, 678-679
Stowell-Hardrath-Ohman's equation, 1086
predicted and experimental fatigue, 1090-1091
Strain, 1218
amplitude
correlation between experimental and calculated, 166, 168
versus number of cycles, 585
versus stress amplitude, 110-111
effective, versus life, 864
mean, 751
fatigue life dependence, 752-753
fracture mode variation, 760
residual ductility effect, 756-763
Mohr's circles, 868
plastic zone ahead of crack tip, 1035
Strain aging ferrous alloys, 776-796
- composition, 777
ductility, 779-780
- experimental procedure, 777-780
fatigue aged C-alloy, 789-791
grain boundary deformation, 791, 795
- precipitates formed, 791, 794
fatigued and aged N-alloy, 784-787
plastic strain amplitude variation with number of cycles, 784, 788
precipitates formed, 784-785
- slip bands and crack nucleation sites, 784, 786-787
S-N curves, 787
unaged C-alloy, 787-789
- slip lines, 788-789, 792-793
unaged N-alloy, 778-784
diffuse slip, 779, 781
Manson-Coffin relationship, 778-780
plastic strain amplitude variation with number of cycles, 778-779
precipitates formed during aging, 780, 783
- slip bands, 782
S-N curves, 778
Strain concentration factors, inelastic stress, 1078
Strain-controlled test, 209
compared with load control data, 231
fully reversed, 1242
oxidation-fatigue interactions, 561
Strain cycling, 163, 165
change of residual ductility, 754
residual ductility variation, 762
Strain distribution, 1154
near crack tip under plastic deformation, 1062
variation near crack tip, 1054, 1056, 1058-1059
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s) or Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strain energy density</td>
<td>1022</td>
</tr>
<tr>
<td>concentration factor</td>
<td>1044</td>
</tr>
<tr>
<td>distribution</td>
<td></td>
</tr>
<tr>
<td>ahead of crack tip</td>
<td>1024-1036</td>
</tr>
<tr>
<td>near blunt notches in plane stress</td>
<td>1036-1045</td>
</tr>
<tr>
<td>total, failure in pure creep</td>
<td>1258</td>
</tr>
<tr>
<td>Strain energy parameter</td>
<td>1163</td>
</tr>
<tr>
<td>versus number of cycles to failure</td>
<td>1173-1178</td>
</tr>
<tr>
<td>Strain energy partitioning</td>
<td>1133-1142</td>
</tr>
<tr>
<td>life predictabilities</td>
<td>1142</td>
</tr>
<tr>
<td>life prediction equations</td>
<td>1137</td>
</tr>
<tr>
<td>life relationships</td>
<td>1138-1139</td>
</tr>
<tr>
<td>materials and experimental procedure</td>
<td>1134-1135</td>
</tr>
<tr>
<td>observed versus predicted lives</td>
<td>1140</td>
</tr>
<tr>
<td>waveforms of verification test</td>
<td>1135</td>
</tr>
<tr>
<td>Strain fatigue</td>
<td>329, 1019</td>
</tr>
<tr>
<td>Strain hold test, numerical simulation</td>
<td>508, 510</td>
</tr>
<tr>
<td>Strain hysteresis loops, versus stress</td>
<td>110</td>
</tr>
<tr>
<td>Strain intensity factor</td>
<td>257</td>
</tr>
<tr>
<td>Strain intensity factor range,</td>
<td>269-271, 279</td>
</tr>
<tr>
<td>cyclic J-integral range</td>
<td>260-261</td>
</tr>
<tr>
<td>Strain life</td>
<td>154, 597, 607</td>
</tr>
<tr>
<td>equation constants</td>
<td>190</td>
</tr>
<tr>
<td>fatigue law</td>
<td>975, 979, 983</td>
</tr>
<tr>
<td>60Sn-40Pb solder</td>
<td>345</td>
</tr>
<tr>
<td>Strain parameters</td>
<td>477</td>
</tr>
<tr>
<td>Strain range</td>
<td>160, 1061</td>
</tr>
<tr>
<td>correlation between experimental and</td>
<td>167</td>
</tr>
<tr>
<td>calculated</td>
<td></td>
</tr>
<tr>
<td>Strain range criterion</td>
<td>204</td>
</tr>
<tr>
<td>inelastic, versus number of cycles to</td>
<td>388</td>
</tr>
<tr>
<td>failure</td>
<td></td>
</tr>
<tr>
<td>modified for crack increment</td>
<td>1230</td>
</tr>
<tr>
<td>Strain range partitioning</td>
<td>15, 29, 53-56, 363,</td>
</tr>
<tr>
<td>395-396</td>
<td></td>
</tr>
<tr>
<td>application</td>
<td>1257</td>
</tr>
<tr>
<td>calculated and experimental life</td>
<td>1121-1122</td>
</tr>
<tr>
<td>creep-fatigue life prediction</td>
<td>402</td>
</tr>
<tr>
<td>equations</td>
<td>395</td>
</tr>
<tr>
<td>HP-IP steam turbine rotor</td>
<td>1252-1253, 1256-1257</td>
</tr>
<tr>
<td>isothermal, B-1900 + Hf</td>
<td>632-635</td>
</tr>
<tr>
<td>life predictabilities</td>
<td>1142</td>
</tr>
<tr>
<td>life prediction</td>
<td>1120-1121</td>
</tr>
<tr>
<td>equations</td>
<td>1136-1137</td>
</tr>
<tr>
<td>number of cycles to initiation</td>
<td>1120-1121</td>
</tr>
<tr>
<td>observed versus predicted lives</td>
<td>1141</td>
</tr>
<tr>
<td>solder fatigue</td>
<td>589</td>
</tr>
<tr>
<td>experimental procedure</td>
<td>591-593</td>
</tr>
<tr>
<td>plastic strain components</td>
<td>590-591</td>
</tr>
<tr>
<td>structural studies</td>
<td>593-594</td>
</tr>
<tr>
<td>total-strain version</td>
<td>329-341</td>
</tr>
<tr>
<td>AF2-1DA</td>
<td>335-337</td>
</tr>
<tr>
<td>analysis</td>
<td>331-333</td>
</tr>
<tr>
<td>evaluation of method</td>
<td>335-338</td>
</tr>
<tr>
<td>Inconel 718</td>
<td>337-338</td>
</tr>
<tr>
<td>Walker constitutive model</td>
<td>333-335</td>
</tr>
<tr>
<td>time-modified</td>
<td>38-39, 342, 365-366, 365-367</td>
</tr>
<tr>
<td>viscoplasticity based on overstress</td>
<td>134</td>
</tr>
<tr>
<td>Strain rate</td>
<td>209, 399, 519</td>
</tr>
<tr>
<td>crack growth effect</td>
<td>213-214</td>
</tr>
<tr>
<td>life prediction</td>
<td>403-404, 410-411</td>
</tr>
<tr>
<td>viscous</td>
<td>437</td>
</tr>
<tr>
<td>Strain ratio</td>
<td>259</td>
</tr>
<tr>
<td>Strain resistance prediction criterion</td>
<td>85</td>
</tr>
<tr>
<td>Strain singularity</td>
<td></td>
</tr>
<tr>
<td>Manson-Coffin law. See Manson-Coffin law, strain singularity</td>
<td>906</td>
</tr>
<tr>
<td>near crack tip</td>
<td>1053, 1055</td>
</tr>
<tr>
<td>Strain tensile, versus stress</td>
<td>109</td>
</tr>
<tr>
<td>Strain-time waveforms</td>
<td>315</td>
</tr>
<tr>
<td>Strength coefficient</td>
<td>406-407</td>
</tr>
<tr>
<td>Stress</td>
<td>1218</td>
</tr>
<tr>
<td>concentrator</td>
<td>215</td>
</tr>
<tr>
<td>effective range</td>
<td>1013</td>
</tr>
<tr>
<td>equivalent</td>
<td></td>
</tr>
<tr>
<td>plastic zone ahead of rack tip</td>
<td>1034</td>
</tr>
<tr>
<td>and stress intensity factor</td>
<td>1031</td>
</tr>
<tr>
<td>as function of time</td>
<td>641, 643</td>
</tr>
<tr>
<td>isothermal fatigue</td>
<td>191, 193-196</td>
</tr>
<tr>
<td>mean, 15, 30, 185, 937, 1017</td>
<td></td>
</tr>
<tr>
<td>correction, 1154, 1229-1230</td>
<td></td>
</tr>
<tr>
<td>improved formulation, 34, 36-37</td>
<td></td>
</tr>
<tr>
<td>versus strain hysteresis loops</td>
<td>110</td>
</tr>
<tr>
<td>versus strain tensile curves</td>
<td>109</td>
</tr>
<tr>
<td>thermom-echanical fatigue, 191, 193-196</td>
<td></td>
</tr>
<tr>
<td>total, versus number of cycles, 50-51</td>
<td></td>
</tr>
<tr>
<td>variation with crack depth, 219, 221</td>
<td></td>
</tr>
<tr>
<td>Stress amplitude</td>
<td></td>
</tr>
<tr>
<td>versus cumulative diametral plastic</td>
<td>48</td>
</tr>
<tr>
<td>strain</td>
<td></td>
</tr>
<tr>
<td>versus fatigue life</td>
<td>101</td>
</tr>
<tr>
<td>isothermal cycling</td>
<td>118</td>
</tr>
<tr>
<td>versus strain amplitude</td>
<td>110-111</td>
</tr>
<tr>
<td>versus temperature</td>
<td>50</td>
</tr>
<tr>
<td>Stress concentration</td>
<td>611, 1007</td>
</tr>
<tr>
<td>Stress concentration factor</td>
<td>1009, 1043</td>
</tr>
<tr>
<td>equivalent</td>
<td>1044</td>
</tr>
<tr>
<td>Stress controlled tests</td>
<td>1083</td>
</tr>
<tr>
<td>Stress-dip procedure</td>
<td>44</td>
</tr>
<tr>
<td>Stress drop</td>
<td>209</td>
</tr>
<tr>
<td>with crack penetration</td>
<td>209</td>
</tr>
<tr>
<td>Stress gradients</td>
<td>874</td>
</tr>
<tr>
<td>Stress-intensity</td>
<td>224-229</td>
</tr>
<tr>
<td>deep cracks, 226-229</td>
<td></td>
</tr>
<tr>
<td>equivalent</td>
<td>209</td>
</tr>
<tr>
<td>short cracks, 225-226</td>
<td></td>
</tr>
<tr>
<td>Stress intensity factor</td>
<td>951, 995, 1027-1028, 1145, 1227</td>
</tr>
</tbody>
</table>
equivalent stress, 1031
Paris law, 281
Stress intensity parameter, 466
Stress range, 527
peak, number of cycles to initiation, 1118-1119
strain rate dependence, 520-522
temperature dependence, 520-522
Stress relaxation, 430, 576
as creep-fatigue life correlating parameter, 427-428
intergranular damage, 428-429
rate, Inconel 625, 472-473, 425
Stress-strain, 77
copper, 66
Cu-2Al, 67
Cu-4Al, 68
Cu-8Al, 69
FEMFAT, 995-996
hysteresis loop, 59
notch principal, 1011, 1013
over-aged Al-4.5Zn-2.5Mg, 64
peak-aged Al-4.5Zn-2.5Mg, 63, 74
response, 184
316 stainless steel, 65
under-aged Al-4.5Zn-2.5Mg, 62, 74
Stress/strain concentration factors, nominal stress, 1080-1081
Stress-time waveforms, 315
Striations spacings measurements, 419-421
Stringer, 316 stainless steel, 905
Stroh's equation, 616
Superalloy, 371, 531, 638, 961, 728
chemical composition, 534
mechanical properties, 824
single-crystal. See Oxidation-fatigue interactions
see also specific superalloys
Superimposed stresses, 938-960
crack initiation on notched specimens, 947, 951
crack propagation, 951, 955-958
material and specimens, 939
maximum stress criterion, 947
number of cycles to failure, smooth specimens, 942-947
prediction models for mixed fatigue conditions, 958-959
test analysis, 939, 942
test program and notations, 939-941
Surface
crack, 751
20Cr-25Ni-Nb stainless steel, 724
microfracture, 755-756
damage, development and inelastic volume fraction, 147
at failure, 304 stainless steel, 904
Surface-mounted solder joint array, 588
SUS304 steel, wedge-type crack, 618

T

T91
creep, 111
stress versus strain tensile curves, 109
2024-T351 aluminum alloy
chemical composition, 174
compressive overload effects, 179
compressive stress effects, 177
equivalent lives of fully reversed cycles, 181
mechanical properties, 175
see also Fatigue, compression and compressive overload effects, 173-182
TAZ-8A, 1199-1200
chemical composition, 1200
TC6 titanium alloy, 838-851
basket-weave microstructure, 845-846
chemical composition, 839
crack initiation, 848-850
crack propagation, 850-851
cyclic softening, 843
experimental methods, 838-839
fatigue crack tip, 848-849
fatigue life, 851
fatigue propagation life, 844
low cycle fatigue properties, 841-844
metallography, 839-840
microstructure, 840
regimes of rolling and heat treatment, 839
specimen geometry, 839
tensile properties, 840-841
total strain and fatigue life, 841-842
voids, 849-850
formation, 850
Widmannstatten microstructure, 844-845

Tensile cracking, 913
Tensile limits, 1223
Tensile plastic work, versus shear modulus, 586
Tensile prestrain
schematic diagram, 165
see also Very low cycle fatigue tensile or compressive prestrain
Tensile strength, pearlite, 78
Tensile test, SAE 1038 steel, 82
Tension/compression hold time, 470
Tension dwell, 209
Texture, 385
Thermal cycling, 107, 209
one-bar restrained, 117-118
Thermal fatigue, 15, 576, 672, 1096, 1115, 1163
life prediction, 1126–1129
monocrystalline superalloys, 680–681
variation of number of cycles to various
crack depth, 1126–1127, 1129
Thermal loading
railroad wheels, 185
see also 1070 Steel, under thermal loading
Thermally activated process, 236
Thermal strain, as function of time, 641, 643
Thermal stress, 29
Thermoelastic finite-element analysis, mono-
crystalline superalloys, 682–690
Thermo-mechanical block loading
experimental lives and isothermal predic-
tions, 191–192
maximum stress, 197
predicted blocks-to-failure, 190
stress-mechanical-strain behavior, 192,
197
temperature-time histories, 189
Thermo-mechanical constant amplitude
fatigue test results, 205
life predictions, 190
loading
maximum stress, 197
oxide layers, 193–194, 199–200
stress mechanical-strain behavior, 192,
197
temperature-time histories, 189
Thermomechanical fatigue, 184, 577, 625,
638, 657–669, 692
comparison of isothermal low-cycle fatigue,
665–666, 668
crack development, 662–664
cyclic stress-strain response, 661–662
cycling, 627–629
disadvantages, 628
damage, 204
definition of life to crack initiation, 664–
665
experimental procedure facilities, 660–661
material and specimens, 658
non-isothermal, 581, 583–584
Ostergren approach, 696–697
simplified formulation, 37
stresses, 191, 193–196
testing procedure, 661
test principle, 658–659
thermal mechanical strain cycle, 659–660
Thermo-mechanical strain cycle, 659–660
Thermo-mechanical testing, B-1900 + Hf,
641–642
Thin-wall tube, damage development, 877–
885, 892, 894–895
crack length versus strain state, 894–895
damage nucleus, 892
as function of strain state and amplitude,
879–881
high-cycle fatigue, 879–881
low cycle fatigue, 882, 884
in torsion, 882, 883
Through-thickness crack specimen, 259–260
Ti 6–4 alloy, 939
crack initiation, notched specimen, 951–
952
fatigue propagation, 951, 955–956
fatigue striations, 946
Haig diagram, 942, 945
number of cycles to failure, 942–947
Titanium alloy, 838, 938
Tomkin’s model, 1125
Tool steel, 576
Torsion, 728, 899
shear, 588
Torsional cracking, notched shaft, 886, 889
Torsional fatigue
cracking behavior, 901
temperature effect on fatigue life, 747–749
Waspaloy, 736, 738–744
Total life, versus hold time, 248, 250
Transgranular crack, 711, 749
growth, 184
Transgranular fracture, 519, 528
Tresca criterion, 863–864
Turbine components, stress-strain tempera-
ture cycle, 638–639
Turbine rotor steels, 972–983
chemical composition and heat treatment
of test materials, 973
experimental procedure, 973–974
life reduction under variable strains
defect-free material, 976, 978
material with defects, 978–980
multiple two-step strain, 973, 975
number of cycles to failure, 974, 977–979
total strains at start-up, 973
variable strain ranges
defect-free material, 974–975
materials with defects, 975–976
Twinning, duplex stainless steel, 815, 819
Two-bar creep ratchetting test, 9Cr-1Mo-V-
Nb steel, 118–120
Two-step loading, 1181, 1189–1190

Uniaxial low cycle fatigue
parameters, 1097–1099
temperature effect on fatigue life, 747–749
Waspaloy, 729–736

U
Variable amplitude, 1218
Variable amplitude loading
 notched components, 987–1005
 precrack load sequence effect, 989
 small crack load sequence effects, 990
Variable amplitude straining, 922–937
 cyclic stress-strain response, 929–932, 924, 927–928
 dependence of number of peaks on maximum diametral strain amplitude, 924
 experimental procedure, 923–924
 fatigue life, 929, 932–934
 hardening/softening curves, 924–926
 rain flow analysis, 923–924
Variable strain
 life prediction, 981–982
 loading, turbine rotor steels, 972–983
Very low cycle fatigue tensile or compressive prestrain, 160–171
 correlations between experimental results and estimated values, 166–169
 experimental procedure, 162–163
 loss of ductility effects, 168–170
 reduction of fatigue life, 168–171
 residual static fracture ductility, 163–166
 superposed effects of ductility loss and microcracks, 170–171
Viscoplasticity, 500
 based on overstress, 123–138
 application to life prediction, 133–136
 formulation, 154–156
 incremental damage accumulation law, 135–136
 inelastic strain rate, 124
 model outline, 124–126
 numerical integration of system of differential equations, 127–133
 predictions for strain-controlled loading, 132–133
 signum function, 135
 step function, 135
 strainrange partitioning, 134
 see also Differential equations
Viscosity function, 125
Visible crack initiation life, 160
\nu-K_h \text{ equation}, 1083
 predicted and experimental fatigue lives, 1089, 1094
Void, 838, 1199
 formation, 552, 758
 intercrystalline, 601–602, 609
 TC6 titanium alloy, 849–850
 von Mises criterion, 863–864
 von Mises equivalent stress, 1147
Walker's functional theory, 331
Waspaloy, 295, 728–749
 composition, 296
 crack formation, 730–731, 735–736, 741–742, 744–745
 damage mechanisms, 745
 dislocation structure, 730, 734, 736–737, 741, 744–745
 effect of temperature on uniaxial and torsional fatigue lives, 747–749
 environmental and creep effects on crack growth, 307
 failure mode, 745
 fatigue crack growth rate, 304, 306
 fracture modes, 305
 gage surfaces, 735, 739
 \gamma \text{ morphology}, 730
 grain boundary, 731
 heat treatments, 730
 initial microstructures, 729–731
 life comparisons, 736, 740–741
 macrophotos, 740
 materials, specimen fabrication, 729
 metallurgical evaluation techniques, 729
 normalized lives for each microstructure and stress state, 747–748
 primary cracks, 743
 principal plane cracking, 745–747
 secondary crack, 742
 tensile properties, 296
 test matrix and procedures, 729
 torsional low cycle fatigue tests, 736, 738–744
 uniaxial low cycle fatigue test, 729–736
 coarse-grain/small precipitate, 729–730
 fine-grain/large-precipitate, 731, 733, 735–736
Wedge-type crack, 611, 616, 618
Wedge-type specimen, 1117
Weibull distribution function, 1199, 1212
Weibull modulus, 1208
Weibull plot, 1208
Weld metal
 austenitic, 209
 crack growth, 214–216
 notch effect, 992
Widmannstatten microstructure, 839–840
 TC6 titanium alloy, 844–845
Yao-Munse's hypothesis, 754
Z

Zero applied load tests, non-stratified oxide layers, 201
Zircaloy-4, stress-strain relation, 1032