Subject Index

A
Accelerator ferritic steels See Steels, ferritic
Alloys, steel See also ASTM Standards, A 302B; A 387; A 508; A 533B
chromium-molybdenum, 83–97, 98–110,
111–122, 123–130, 131–139
ferritic, 69–80, 111–22, 123–30, 131–39,
310–18
iron-nickel-vanadium, 310–18
long-range ordered(LRO), 310–18
nickel-based,
Hastelloy-X3, 30–52
nimonic, 151–61
precipitation-strengthened, 141–50
vanadium, 271–309, 310–318
cold-worked, 291–309
zirconium, 54–67
Aluminum
in-reactor/out-reactor creep, 5–10
Anisotropy factors
pressure tube deformation, 60–67
Anneal hardening See hardening under
specific materials
Annealing, light
optical fibers, 647–53
Annealing, recovery
ceramic nuclear fuels, 598–606
Annealing, thermal
ceramic nuclear fuels, 593–608
pressure vessel steels, 461–479, 480–93
solid-state track recorders, 556
submerged-arc welds
in-situ vs test data, 448–60
uranium mononitride, 602–08
ASTM J-Integral Resistance Curve Test
Procedure, 572
ASTM Standards
A 302B(pressure vessel steel): 381, 461,
480–83, 535–51, 558–59
A 370: 497
A 387(pressure vessel steel): 98–110
A 508(pressure vessel steel): 408, 494, 495
A 533B(pressure vessel steel): 370, 381,
383, 395, 408–9, 461, 494, 495, 506,
535–51, 558, 564(table), 570
E 23: 449, 497
E 185: 409, 502
E 208: 425
E 399: 336, 573
E 647: 178
E 693: 506, 544
E 706, 544
E 813: 141–42, 363, 572–73
for nuclear reactor surveillance, 554(illus),
554–55
B
Bainitic microstructure
effect on embrittlement, 98–110
submerged-arc weld metals, 323(illus), 323,
330
Benchmark fields
fast neutron reactors, 781–87
Bitumen isates
alpha/gamma-ray irradiation of, 618, 623–26
gas evolution, 615, 617, 621
leach testing of, 618, 621–23, 627
swelling of, 616–627
Boron
isotope
capture, 769–780
cross section values, 781–86
and helium production, 514, 520
C
Carbides
containing boron, 769–780
in weld metals, 333
Carbon decorated vacancy complexes, 369,
375–76
Cascade damage
ferritic steels, 115–119
Catalytic recombiners
use for radioactive waste control, 643–44
Ceramic nuclear fuels
electrical resistivity, 596–98, 606–07
fission damage of, 593–601
lattice parameters, 594–96, 605–07
magnetic properties, 598–601
radiation-induced physical properties, 593–601, 602–08
Ceramics
containing lithium, 659–68
crack propagation, 657
radiation behavior of, 654, 660–68
Charpy impact testing See also specific materials
ASTM Standard E 23: 449
Chromium See also Steels, chromium-molybdenum
in steel alloys, 83, 98, 111, 123, 131–39, 245–70
Climb See Dislocation, climb/glide
COBRA computer code, 249
Cold work See Steel - stainless, cold-worked
Control rod damage, 769–80
Convergent beam electron diffraction, 322, 324–25
Copper
annealing effects on, 486–92
creep, in-reactor/out-reactor, 5–10
displaced atoms of 535–51
embrittlement,
weld metals, 494–504
fracture properties,
weld metals, 358–68, 448–60
helium production in, 746–48
nucleation of sites, 535–51
precipitation of, 389–93, 480, 486–92, 535–51
stabilization of voids, 557–58
Corrosion
iron, 131–39
iron chromium-molybdenum alloys, 131–39
ferritic steels, 131–39
stainless steel, 239–44
tantalum, 131–39
Crack growth See also specific materials
ASTM Standard E 647:178
devices for measuring, 654, 657(illus)
hydrogen-assisted, 239–44
micromechanical model, 223–38
Paris analysis, 178(table), 181
Crack initiation See Crack growth; Fracture strain
Crack propagation See Crack growth
Creep, radiation-induced
aluminum, 5–10
copper, 5–10
ceramics, 658
ferritic alloys, 69–80, 72(table)
Hastelloy-X3, 30, 32–44
nickel-base alloy, 32–44
pressure tubes, 54–67
stainless steels, 11–20, 22–29, 30, 32–44
zirconium alloys, 54–67
Creep rupture, radiation-induced
Hastelloy-X3, 44–51
nickel-based alloy, 44–51
stainless steel, 22–29, 30–52
Cross sections
ASTM Standard E 693: 506, 544
boron isotope, 781–86
Frenkel pair production, 535, 540(table)
libraries of, 756, 781
lithium isotope, 763, 781–86
various isotopes, 535–51, 540 (table), 733(table), 733–40, 743–49, 745(table), 750–60, 752(table)
Cryogenics, 701–04
Crystallographic texture
effect of fast neutron radiation, 61, 64–65

D

Data processing codes
COBRA, 249
FERRET, 781
FORIST, 762
Monte Carlo, 761–62
MORSE-CV, 761–768
SPECANL, 733
SPECTER, 748–49
UFO, 761–768
Defect clusters, 111–22, 120(illus), 121(illus)
Deformation behavior
creep, 12–21, 30–52
and natural gating mechanism, 223, 228
nimonic alloys, 151–61
pressure tubes, 17, 30–52, 55–67
Deuterium-tritium neutron source, 762
Differential flux, 730, 734–40
Dimple structures, 186–87, 187(illus)
Dislocation
bias, 74–77
climb/glide, 5–10, 69–80
configuration, 36
density, 36
dipoles, 223–38
loops, 74–80, 75(illus), 76(illus), 607
Frank loop component, 217(illus)
Displacement
damage rate, 35
load-line, 142–43
Dosimetry
foil activation, 726(illus), 730–40, 769–70, 774
neutron, 552–68
spallation, 726(illus), 730–40, 743–44

Ductility See Charpy V-notch specimens and ductility under specific materials

Dynamic resolution, helium
effect on creep behavior, 49

E

Elastic-plastic fracture See Fracture strain
Elastodiffusion
effect on creep behavior, 43
Elastomers
use as seals, 608–14
Electron microscopy See also Microstructure; specific materials
convergent beam electron diffraction, 769–80
techniques for sample irradiation, 322–25, 727

Embrittlement See also specific materials
factors contributing to, 553 (table)
helium-induced, 271–90
and lateral expansion, 494–504
predictive formulas for, 433–40, 552–68
trend curve analysis, 552–68

Extrusions/intrusions
micromechanics of crack initiation, 233–38

F

Failure modes
stainless steels, 245–70
Fatigue crack growth See Crack growth; specific materials
FERRET computer code
for adjusted cross sections, 781–87

Ferritic alloys See also Steels - ferritic
cascade damage, 115–19
creep, 69–80, 72(table)
electron microscopy of, 73, 75, 76(illus), 118–21, 314–17, 315–16(illus)
impact toughness, 123–30
long-range ordered, 310–18
mechanical properties, 123–30, 310–18
microhardness, 69–80, 116–22
strain-rate effect, 313–14
tensile properties, 131–39, 311–14
trace impurities in, 123–30
Films, polyimide See Polyimide films; Polymers

Fission rate measurements
boron, 774–79
lithium, 774–79
uranium, 774–79

Fluorine surface treatment
of polyethylene bottles, 688–89

Fluoropolymer
use as reactor seal, 608–13
Flux, neutron, 730–40
Foil activation dosimetry, 733–40, 769–70, 774

Forecasting See Prediction models

Fractography
precipitation strengthened alloy, 145(illus)
stainless, martensitic, 90–93(illus), 90–97, 255–64
stainless, 186(illus), 187(illus)
vanadium alloys, 282–85(illus), 299–302, 301–04(illus)
Fracture strain
nimonic alloys, 158–60
stainless, austenitic, 171(illus)
stainless, 162–73, 174–90, 245–70
weldments, 191–206
Fracture surface morphology
vanadium alloys, 282–85, 299–302, 301(table), 301–304(illus)
Fracture toughness See also specific materials
ASTM Standard
E 813: 141–42, 572–73
E 399: 336, 573

Fusion blanket
design of, 761–67
Fusion materials, 744–46, 747
Fusion neutronics analysis, 761–67
Fusion reactor
fail-safe components, 223–24
OSIRIS, 654–68

G

Gamma Facility, 714–16, 715(illus)
Gamma-ray radiation See Radiation, gamma-ray
Gas control
radioactive waste, 636–45
Gas evolution
bitumen waste forms, 615, 617, 621(table)
polymer waste forms, 632–633, 633(table)
Gas, hydrogen/oxygen
safety problems, 636, 644–45
Glass image fibers, 647–53
Glide See Dislocation, climb/glide
H

Hardening, radiation See also specific materials
micromechanical model, 223, 232–237
Hardness See Knoop hardness; specific materials; Vickers hardness
Hastelloy-X3, 30–52
creep, in-pile, 32–44
creep rupture, in-pile, 44–51
Heat-affected zone materials
embrittlement of, 98–110, 408–19, 420–47
Helium
bubble growth, 49–50
cross section measurements, 769, 781–82
dynamic resolution of, 49
embrittlement effects, 271–90
implantation in vanadium
via cyclotron, 291–309
via "tritium trick", 271, 273, 285–87
production of, 514, 746–48, 759,
773(illus), 773–80
stabilization of voids, 557–58
Hopkinson’s bar
for stress-strain/strain-rate relationships,
151–52
Hydrogen
safety problems of gas, 636, 644–45
in stainless steel,
role in stress corrosion cracking, 239–44
solubility of, 239–44
traps, 239–44
I

Idaho National Engineering Laboratory, 705–
17
Impact tests See also Charpy tests under specific materials
ASTM Standard E 23: 449, 497
Impurities in steel, 123–30 See also Copper;
Nickel; Phosphorus; Silicon; Sulfur
effect on radiation damage, 123–30, 395–
407, 420–47, 461–79 563–564(tables),
563–566
Insulating films
radiation effects on, 669–680
Integral values
fusion neutronics analysis, 761–67
neutron flux, 730, 733–40
Intermetallic precipitates See Precipitates,
intermetallic
Iron See also Ferritic alloys; Steels, ferritic
corrosion of, 131–39
interlaboratory study of, 750–60
stress-strain curve, 134
tensile properties, 131–39
Irradiation devices
and insulating ceramics, 658–60, 659(illus)
for study of,
creep under traction, 658, 659(illus)
fatigue crack growth, 657(illus)
Irradiation facilities See Reactors, nuclear
Isotope production, 705–17, 718–40, 743–49
K

KAPTON polyimide film, 669–80
Kerma heat production, 760, 763–67,
765(table)
Kirkendall effect, inverse, 245–70
Knoop hardness
uranium mononitride, 602–08
L

Lateral expansion criterion
and embrittlement measurements, 494–504
Least squares analysis
lithium/boron isotopes 781–87
Linde 80 submerged-arc weld metals See
Submerged-arc weld metals
Lithium aluminate
in ceramic breeding blankets, 654, 659–68
Lithium isotope
cross sections, 781–87
least squares analysis, 781–87
vanadium alloy studies, 272
Lithium-fluoride cuboidal pile, 761–67
Long-range ordered(LRO) alloys, 310–18
electron microscopy, 314–17, 314–16(illus)
mechanical properties, 310–18
strain rate effect, 312–14
tensile properties, 311–14
Los Alamos Meson Physics Facility
(LAMPF), 718–40
M

Martensitic steel, See Steel—martensitic
Mechanical properties See also specific materials
testing of steel products,
ASTM Standard A 370: 497
Metals See Aluminum; Copper; Iron; Nickel;
Niobium; Steels; Submerged-arc weld
metals; Tantalum; Vanadium; Weld
metals; Zirconium
Micro-bulge tests
ferritic steels, 111, 116–22
Microhardness See Hardness; specific materials

Micromechanical model
fatigue crack initiation, 223–38
radiation hardening, 232–37

Microstructure See also Electron microscopy; specific materials
bainitic, 98–110, 323(illus), 330
carbon decorated vacancy complex, 369
crystallographic texture, 64–65
defect clusters, 111–22
dimple structures, 186–87, 187(illus)
energy dispersive X-ray technique, 322, 324, 327–28
extraction techniques, 321–31
extrusions/intrusions, 233–38
intergranular fracture, 98–110
thin foil techniques, 321–31
voids See Voids

Miniaturized sample, 111–22

Molybdenum See also Steels - chromium-molybdenum
in steel alloys, 83–89, 98, 111, 123
Monte Carlo code, 761, 763

N

Neutron
dosimetry, 552–68, 743–49
ergy spectrum, 750–60, 761–67
cross sections, 733–40, 743–49
radiation See Radiation, neutron
radiography, 712–13, 712(illus)
scattering, 480
transmutation doped(NTD) silicon, 705

Nickel
creep rates, 69–80
embrittlement effect, 245–70, 418–19
in pressure vessel steels, 418–19, 419(table), 430
and stabilization of voids, 557–58
and stacking fault energy, 245–70
in steel alloys, 30–52, 310–18
in weld metals, 418–19, 419(table), 430, 439

Niobium
in steel alloys, 54–67, 120

Nimonic alloy (PE 16)
mechanical properties, 151–61
strain rate, 151–61, 155(table)
tensile strength, 156–57
yield stress, 155–56

O

Ophthalmic solution preservatives
benzyl alcohol, 688, 691–97
phenylethyl alcohol, 688, 691–97
3-phenyl-l-propanol, 688, 691–97

Optical fibers
gamma-ray radiation effects, 648–49
photobleaching of, 647–53
thermal effects, 647–53

Organic matrix waste forms See Waste forms, organic

Oxygen
safety problems of gas, 636–45

P

Phosphorus
in steels, chromium-molybdenum, 102–10, 123, 125–27, 98,
pressure vessel, 430, 431, 436, 441, 461, 467–79, 494

Photobleaching
of optical fibers, 647–53

Polyethylene bottles
fluorine surface treatment of, 689
gamma-ray radiation effects, 688–97
permeability of, 688–89, 692–97
sterilization of, 689–90

Polyimide films
gamma-ray/neutron radiation effects, 668, 669–80
on mechanical properties, 672–80
on optical properties, 677–78

Polymer waste forms
alpha-/gamma-ray radiation effects, 615–35
gas evolution, 632–33
leaching, 633–34
mechanical integrity, 631–32
shrinkage/swelling, 627–31

Polymers (films and fibers)
fast atom bombardment/stress effects, 682–87
electron microscopy of, 682–87, 684 (illus)
microcrack initiation, 682–87, 684 (illus)
surface morphology of, 682–87

Positron annihilation, 369–75, 377

Precipitates See also Copper; Nickel
intermetallic, 11–21
titanium, 306
Precipitation strengthened alloys, 141–50
ductility of, 146–48
fractography, 145(illus)
fracture toughness, 146–48
Prediction models, radiation damage
data covariances, 750, 756
limitations of, 552–69
microstructure effect on, 556
neutron fluence, 750–60
neutron spectra, 751 (table)
 fast reactor, 750–60
 fission, 750–60
 fusion, 750–60
thermal reactors, 750–60
review of current status, 560–62
defect cross sections, 538–51, 755, 756
end-of-life, 505, 513–14
life-extension range, 505, 513–14
macroscopic property change, 535–51
REAL-84 exercise, 750–60
steels, structural
 end-of-life, 505, 513–514
 life-extension range, 505, 513–14
text matrix formation, 562–66
weld metals, 441–47, 535–51
defect cross sections, 538–51
Pressure tubes
defformation of, 17–21, 54–67
brittlement of, 98–110
Pressure vessel steels
 See Steels, pressure vessel
Proton beam generation, 718–40, 721 (illus), 725 (illus), 727 (illus)
cross sections, 733–40

R

“Rabbit” system
 for foil activation dosimetry, 726 (illus), 730–40, 731 (illus), 732 (illus)
Radiation—alpha
effect on organic waste forms, 615, 618, 623–26
Radiation—deuteron
 ferritic alloys, 69, 77–79
 hardening, 69, 79–80
Radiation—gamma-ray
 Gamma Facilities, 714–16, 715 (illus)
 Idaho National Engineering Laboratory, 705–17
 of optical fibers, 648–49
 of organic waste forms, 621–23
 of polyethylene bottles, 688–97
 of polyimide films, 669–80
of silica glass image fibers, 647–53
spallation radiation facility, 733–40
spectral analysis, 735–40
steels,
 pressure vessel, 505, 511–31
 structural, 505, 511–31
 weld, 505, 514–31
Radiation—light-ion
 See Radiation, deuteron
Radiation—neutron
 boron reaction rates, 769, 774–80
 ceramic nuclear fuels, 593–608
cross sections
 See Cross sections
damage calculations, 552–68, 743–49, 750–60
damage effect variables, 563 (table)
deuteron-tritium source, 762
from proton beam interaction, 718–40, 721–22 (illus), 726 (illus)
fusion neutronics analysis, 763–67
of specific materials,
 aluminum, 5–10
 chromium-molybdenum steel, 111–22
 copper, 5–10
 elastomers for reactor seals, 609–14
 ferritic alloys, 141–50, 111–22
 nickel-base alloys, 30–52
 polyimide films, 669–80
 steels, martensitic, 83–97, 245–70
 steels, stainless, 22–29, 30–52, 161–73, 207–22, 245–70
 steels, structural, 505–34
 vanadium alloys, 271–90
 zirconium alloys, 54–67
spectral analysis, 750–60, 761–67
data covariances, 756, 761, 766–67
group constants, 756–60
spectra unfolding, 750–60, 761, 763–68
uranium compounds, 593–608
Radiation—proton, 131–39, 718–40, 725 (illus)
Radiation—spallation, 718–49
Radiation—thermal neutron
 of steels
 pressure vessel, 505, 511–31
 structural, 505, 511–31
 weld metals, 505, 514–31
Radioactive waste
 See Waste, radioactive
Radiography, neutron, 712–13, 712 (illus)
Reactor vessels See Steels, pressure vessel; Steels, structural; Submerged-arc welds; Weld metals

Reactors, fusion
materials, 744-46
OSIRIS, 654-68

Reactors, nuclear
Advanced Reactivity Measurement Facility, 710-13, 711(illus)
Advanced Test Reactor, 706-08, 707(illus)
Coupled Fast Reactivity Measurement Facility, 710-13, 711(illus)
fast reactors, 781-87
Gamma Facility, 714-16, 715(illus)
high flux irradiation facilities, 705-17, 769-80
Idaho National Engineering Laboratory, 705-17
Los Alamos Meson Physics Facility, 718-40 low temperature neutron irradiation facility, 701-04
Power Burst Facility, 713-14, 714(illus)
spallation facilities, 131, 718-40
surveillance programs, 358-68, 420-47, 552-68
Zero Power Plutonium Reactor, 769-80
REAL-84
radiation damage prediction, 750-60

Resins, thermosetting
alpha/gamma radiation effects, 615-35
Rod damage, 769-80
Rupture See Creep rupture

S
Sample size effect See Specimen size effect
Seals, nuclear reactor, 609-13
Segregation, radiation-induced, 245-70
Silica glass image fibers, 647-53
Silicon
effect on steel mechanical properties, 128-29
SIPA mechanism See Stress-induced preferred nucleation(SIPA) mechanism, 42-43
Slip bands
permanence of, 223-38
plastic strain in, 223-38
Small-angle neutron spectroscopy(SANS), 480-93
Solid-state track recorders, 556
Spallation cross sections
damage analysis, 743-44
dosimetry, 743-44
Spallation radiation effects facility, 718-40, 719(illus)
SPECANL computer code, 733
Specimen size effect, 111-22, 141-50
SPECTER computer code, 748-49
Spectra, neutron radiation, 750-60, 781-87
Spectrometry, neutron, 480, 762, 773
Stacking fault energy
cold-worked stainless steel, 245-70
Stainless steel See Steels, stainless
Steel, dual phase, 111-22
Steel, impurities in See also Copper; Nickel; Phosphorus; Silicon; Sulfur
effect on embrittlement, 123-30, 395-407, 420-47, 461-79
Steels—chromium-molybdenum, anneal hardening, 98, 102-10
Charpy impact tests, 123-30
ductility, 123-29
electron microscopy of, 105(illus)
embrittlement, 98-110
impact toughness, 123-29
intergranular fracture, 98-110
microstructure, 100-02
stress-strain curves, 135
tensile properties, 131-39
thermal aging effects, 102-08
types, 21/4Cr-1Mo, 98-110, 131-39
12Cr-1Mo, 123-30, 131-39
HT-9, 123-30, 131-39
Sandvik alloy, 123-30, 131-39
Steels—ferritic See also Ferritic alloys
cascade damage, 115-19
Charpy impact tests, 123-30
electron microscopy of, 73, 75-76(illus), 310-18 hardening, radiation, 69-80, 111-22
Vickers, 111, 116
impact toughness, 123-30
mechanical properties, 115-22, 123-30
micro-bulge tests, 111-22
microhardness, 111-22
microstructure, 118-22
softening of, 111-22
tensile properties, 131-39
transition temperature behavior, ASTM Standard E 208: 425
Steels—martensitic
Charpy impact tests, 83-97
cleavage fracture, 260, 261(illus)
ductility, 83-97, 252, 269
failure modes, 264-70
fractography, 90-97, 90-93(illus), 255-64
fracture toughness, 249-54, 269
hardness, 89-90
mechanical properties, 245-70
microstructure, 255–64
stacking fault energy, 245–70
stress-strain curve, 134
tensile properties, 132–39, 245, 249–54, 269
transition temperature behavior, 83–97
void swelling, 245, 257, 257–60(illus)
Steels—pressure vessel
absorbed energy values, 494–504
carbon decorated vacancy complexes, 369
Charpy shift, 505, 507–10, 508(table), 514–21, 552–68
cleavage, 333 damage effect variables, 563(table)
damage predictions See Prediction models, steels, pressure vessel
damage rate of, 535–51
dislocation structure, 369, 375
ductility See Steels—pressure vessel, Charpy V-notch specimens
dynamic strain-aging of, 395–407
elastic-plastic fracture toughness, 334, 336–57
electron microscopy, 369, 375–77, 375(illus)
and lateral expansion, 494–504
trend analysis curves, 552–68
hardening, 379, 386–89, 408–19, 535–51
interlaboratory study of, 750–60
interstitial impurities, 395–407, 420–47, 461–79
J-integral toughness See Steels - pressure vessel, fracture toughness
macroscopic property change, 535–51
microstructure, 556
(tables), 494, 497–504, 505, 507–10, 514–21, 569–89
upper-shelf energy, 333–51, 417, 483–84, and statistical analysis, 569–89
and trend curve analysis, 552–68
Vickers hardness tests, 373
yield strength, 379–94
Steels—stainless
Charpy V-notch specimens, 192
cold-worked, 207–22, 245–70
creep growth, 162, 167–90, 239–44
creep/creep rupture, 11–21, 22–29, 30–52
ductility, 30–52, 207–22
electron microscopy of, 164(illus), 216(illus), 216–17
embrittlement of, 191–200
failure modes, 245, 264–70
fatigue crack growth, 174, 178–80
fractography, 186–87(illus), 255–64
fracture toughness, 141–50, 162–73, 171(illus), 174–90, 245–70
mechanical properties, 162–73, 191–206, 207–22, 245–70
microstructure, 175(illus) 184–85, 185 (illus), 207–22, 255–64
stress rupture, 22–29
tensile properties, 196–97, 199–201, 207, 212–16, 245, 249–54
types of, See also ASTM Standards A 302B, A 387, A 508, A 533B
AISI 300 series, 191–206
AISI 304, 174–90, 239–44
AISI 316, 11–21, 22–29, 174–90, 207–22 245–70
D9, 22–29
D21, 141–50
DIN 1.4948, 162–73
DIN 1.4970, 30–52
DIN 1.4981, 30–52
DIN 1.4988, 30–52
DIN X6 CrNi 1811, 162–73
voids, 11–21, 245–70, 257–60(illus)
Steels—support structure
Charpy shift, 505–34
embrittlement of, 505–34
Sterilization
use of gamma-ray radiation, 689–70
Stress-induced preferred nucleation (SIPA) mechanism 42–43
Stress-strain curves
chromium-molybdenum steel, 135
iron, 134
martensitic steel, 135
tantalum, 134
vanadium alloys, 276–78
Submerged-arc weld metals
absorbed energy values, 495–504
Charpy shift, 505, 514–21
cleavage, 333
copper content, 321–31, 326(table), 358–68
ductility See Submerged-arc welds, Charpy V-notch specimens
electron microscopy, 321–23
embrittlement, 333, 420–47, 494–504
J-integral toughness See Submerged-arc welds, fracture toughness
microstructure 321–331, 323–25 (illus), 329–33(illus)
tearing modulus, 363–65, 367
tensile properties, 191, 196–97, 199–201, 358–61
transition temperature effects, 333–57, 410, 448,450–60, 494, 497–504, 569
upper shelf energy, 333–57, 358–68 448, 569–89
yield strength, 358
Sulfur
effect on steel mechanical properties, 127
Surveillance of nuclear reactors, 358–68, 420–49, 552–68
ASTM Standards for: 409, 544, 554(illus), 554–55
Swelling
bitumenisates, 618–27
polymer waste forms, 627–35
stainless steel, 11–21, 245–70
vanadium alloys, 275(table), 284

Tantalum
corrosion of, 131, 133
stress-strain curve, 134
Temperature effects See also Annealing, thermal; Thermal aging
aluminum, 5–10
copper, 5–10
elastomers, 609–13
ferritic steels, 425
iron-base alloys, 145–48
nil-ductility transition temperature, ASTM E 208:425 See also specific materials
‘‘registration temperature,’’ 556
stainless steel, 162–73, 207–22
creep, 11–21, 22–29
vanadium alloys, 273–90
on weldments, 191–206 zirconium alloys, 54, 59–67
Tension tests See also specific materials
cold-worked stainless steel, 207–22
ferritic steels, 134–39
long-range-ordered alloys, 310–18
miniaturized tensile specimens, 379–93
nimonic alloys, 156–58
stainless steel, vanadium alloys, 274, 275(tables), 274–81, 294(table), 294–99, 300
weldments, 196–7, 199–201, 200(table)
Thermal aging See also Annealing, thermal
cold-worked stainless steel, 207–22
embrittlement, chromium-molybdenum steel, 98–110, 99(table)
long-range-ordered alloys, 310–18
Thermosetting resins
effect of alpha/gamma-ray radiation, 615–35
Thin foil techniques, 322, 324(illus)
Three Mile Island nuclear reactor accident, 636
Three-point bend specimens, 397–407
Titanium precipitates, 306
Trend curves See Prediction models
Tritium production, 761, 763–67

U

UFO data processing code, 761–67
Uranium compounds See also Ceramic nuclear fuels
fission damage, 593–608
uranium carbides, 593–601
uranium mononitride, 602–08
defect identification, 606–07, 607(table)
interstitial cluster, 607
Knoop hardness, 602–08
vacancy cluster, 607
uranium nitrides, 593–608

V

Vanadium alloys, 271–309, 310–18
cold-worked, 291–309
ductility, 291–309
electron microscopy, 284(illus), 281–84, 285(illus), 302–06
embrittlement of 120, 271–90, 306–08
fractography, 282–85(illus), 299–302, 301–04(illus)
microstructure, 291–309, 302–06, 303–305(illus)
stress-strain curves, 276–77, 278
voids, 275(table), 284, 285–87, 285(illus), 306(illus), 305–06
Vickers hardness
ferritic steels, 116–22
pressure vessel steels, 386–389
Voids
in ceramic nuclear fuels, 607
in martensitic steels, 245, 257, 258–60(illus)
in pressure vessel plates, ASTM 302B, 480–93
stabilization of, 557–58
in stainless steel, 11–21
and trend curve analysis, 557–59
in vanadium alloys, 275(table), 284 285–87, 285(illus), 306(illus), 305–06
W
Waste forms, organic
bitumenisates, 615–27
organic polymers, 627–35
radiation effects, 615–35
Waste, radioactive
gas control, 636, 639(table), 639–45
use of catalytic recombiners, 642–44
logic diagram, 638
radiolytic gas generation, 639–641
safety, 636–45
shipping of, 636–45
storage, 636–45
Weld metals See also Submerged-arc weld metals
ductility, 197–99, 201–04
embrittlement of, 494–504
hardening of, 535–51
heat affected zone, 191–206, 193(illus)
mechanical properties, 111–22, 191–206
prediction models, 420–47
temperature effects, 196–7, 199–201, 207–22
tensile properties, 196–197, 199–201
X–Z
Xenon lamp
for photobleaching, 651–53
X-ray technique, energy dispersive
for microstructure studies, 322, 324, 327–28
Yield strength See specific materials
Zero Power Plutonium Reactor, 769–80
Zirconium alloys, 54–67
microstructure, 65
use for pressure tubes, 54–67