Subject Index

A

Subject Index
Abrasive wear, 362, 375
Acid solution, extraction of, 148
Adhesive resistance, 349
Adhesive wear, 375
Aerospace applications, 362, 375, 386
Aluminum, 297
American Iron and Steel Institute
ASTM standards
A 295, 113
A 295 52100, 27, 113, 330
Austenite, retained, 320, 330, 399
control, 309
heat treatment generation, 244
life extension relationship, 285, 297
Automotive applications, 164, 285
Ceramic ball hybrid bearings, 349
Chip formation, 71
Chromium, 349, 399, 414
chromium-molybdenum steel, 113
reduction, 3
Cleanliness, 138, 176, 226, 443, 509
assessment, internal, 101
improvement, 263
macro-cleanliness, 164
ultra clean steel, 47
Contact stress, uniform, 330
Continuous casting, 3, 27, 309
Corrosion resistance, 349, 362, 375, 414
Coulter counter method, 148
Cracks, 197, 213
microcracks, 297
nucleation, 493
propagation, 443, 493
Cromdur 30, 362, 375
CSS-42L, 362, 375
Cutting forces, 71
Damage
mechanisms, 197, 244
surface, 320, 330
surface initiated, 263
Debris denting, 330
Defects, 164
Dents
effects, 244
raceway, 263
Dimensional stability, 244
Distortion, 86
Duplex hardening, 386
Dynamic capacity, 213
Elastic modulus, 427
Elastohydrodynamic film
parameter (lambda), 226
Elastoplastic properties, 427
Endurance limit, 459
Environmental issues, 86
ES1 steel, 414
Evaluation program, bearing steel, 138
Extraction, 148, 176

Fatigue endurance, 101
Fatigue failure, 125, 148
ultra-long, 113
Fatigue life, 113, 309, 414, 493
carbonitrided bearing, 297
characteristics, 349
distribution, 197
extension, 285, 459
nonmetallic inclusion
evaluation, 148
prediction, 474
testing, 138, 226, 244, 375
testing, duplex hardened components, 386
Fatigue limit, 101
stress, 474
Fatigue, spalling, 443
Fatigue strength, 113, 176
Fatigue tests, 263, 330, 509
flat washer, 493
life tests, 138, 226, 244, 375
Finite element method, 427
52100, 3, 349, 375, 474
5280, 3
Flaking, 226
surface originated, 213
Fracture
delayed, 226
reverse, 226
test, 138
toughness, 362

Generalized Pareto distribution, 125
German standard, 164
German steel industry, 164
Grain boundary, 226
Grain growth inhibition, 27
Grain size, 297
Grinding, 86
Groove formation, 509

Hardening, 47
distortion, 86
duplex, 386
strain, 427
Hardness, 3, 309, 414
hot, 349, 362, 375, 399
micro-hardness, 297
recovery, 362
surface, 386
Heat treatment, 113, 399, 474
applied, 443
carbonitriding, 297
characteristics for life
extension, 285, 309
optimization, 244
performance, 330
property development, 27
quenching, 86
response, 3
Hertzian stress, 47
High speed steels, 399
Hoop stress, 459
Hydrogen, 113
embrittlement, 226

Image analysis, 176
Immersion tests
tap water, 414
ultrasonic testing, 164
Impact bending, 3
Impact toughness, 349
Inclusion, 113, 459, 493
micro-inclusion, 509
nonmetallic, 101, 164, 226, 459
elastic modulus, 427
evaluation method, 148, 176
hard, 47
hydrogen trapping, 113
spalling effects on, 320
population, 493
ratings, 125
size prediction, 125
size ratings, 509
Indentation, 197, 263, 427
simulation, foreign particle, 244
<table>
<thead>
<tr>
<th>Index Terms</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingot size</td>
<td>27</td>
</tr>
<tr>
<td>Inhomogeneity</td>
<td>459</td>
</tr>
<tr>
<td>International Organization for Standardization (ISO)</td>
<td>71</td>
</tr>
<tr>
<td>KE bearings</td>
<td>285</td>
</tr>
<tr>
<td>Load, equivalent bearing</td>
<td>213</td>
</tr>
<tr>
<td>Loading</td>
<td>125, 197, 320, 349, 493</td>
</tr>
<tr>
<td>Local stress</td>
<td>213</td>
</tr>
<tr>
<td>Lubrication</td>
<td>474</td>
</tr>
<tr>
<td>Lundberg-Palmgren bearing life theory</td>
<td>213</td>
</tr>
<tr>
<td>M50</td>
<td>349, 375, 386, 399</td>
</tr>
<tr>
<td>Microhardness</td>
<td>297</td>
</tr>
<tr>
<td>Microyield stress</td>
<td>427</td>
</tr>
<tr>
<td>Modeling</td>
<td>197</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>113, 399</td>
</tr>
<tr>
<td>M2</td>
<td>399</td>
</tr>
<tr>
<td>Nano-indentation measurements</td>
<td>427</td>
</tr>
<tr>
<td>Nickel</td>
<td>226, 297</td>
</tr>
<tr>
<td>Nitrided layer</td>
<td>427</td>
</tr>
<tr>
<td>Nitrided steel</td>
<td>362, 459</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>414</td>
</tr>
<tr>
<td>Noise level measuring test</td>
<td>414</td>
</tr>
<tr>
<td>Nondestructive testing</td>
<td>125</td>
</tr>
<tr>
<td>Nonmetallic inclusions</td>
<td>101, 164, 226, 459, 427</td>
</tr>
<tr>
<td>evaluation method</td>
<td>148, 176</td>
</tr>
<tr>
<td>hard</td>
<td>47</td>
</tr>
<tr>
<td>hydrogen trapping</td>
<td>113</td>
</tr>
<tr>
<td>spalling effects on</td>
<td>320</td>
</tr>
<tr>
<td>Notch effects</td>
<td>244</td>
</tr>
<tr>
<td>Notch impact strength</td>
<td>3</td>
</tr>
<tr>
<td>Oil lubrication life test</td>
<td>414</td>
</tr>
<tr>
<td>Optical emission spectroscopy</td>
<td>101</td>
</tr>
<tr>
<td>Optically dark area</td>
<td>113</td>
</tr>
<tr>
<td>Oxygen</td>
<td>47</td>
</tr>
<tr>
<td>analysis</td>
<td>138</td>
</tr>
<tr>
<td>content</td>
<td>176</td>
</tr>
<tr>
<td>Particle indentation simulation, foreign</td>
<td>244</td>
</tr>
<tr>
<td>Particle metallurgy</td>
<td>349</td>
</tr>
<tr>
<td>Peeling</td>
<td>226</td>
</tr>
<tr>
<td>Plastic deformation</td>
<td>244</td>
</tr>
<tr>
<td>Process evaluation</td>
<td>138</td>
</tr>
<tr>
<td>Process evaluation</td>
<td>138</td>
</tr>
</tbody>
</table>
Production costs, 414
Pyrowear 675, 362

**Q**
Quenching, 3, 86, 113

**R**
Railway, 164
Reduction ratio, 27
Rig testing, 386
Roughness, 197

**S**
Saltwater spray test, 414
Sample preparation requirements, 138
SCM435, 113
SEP 1927, 164
Slag refining, 148
Sliding wear, 386
Soaking time, 27
Society of Automotive Engineers (SAE)
SAE 5140H, 297
SAE 52100, 3, 176, 309, 320
comparison with CSS-42L, 375
fatigue failure, 113
Society of Tribologists and Lubrication Engineers (STLE), 474
Sodium chloride immersion test, 414
Softening, 443
Solidification, 27
Spalling, 493
fatigue, 443
Spectroscopy optical emission, 101
Stability, microstructural, 443
Statistics of extreme method, 125, 176, 509
Stress analysis, 263
Stress conditions, 3
Stress, contact, 474, 509
Stress, cyclic, 443
Stress distribution, 125
Stress, fatigue limit, 474
Stress level, applied, 443
Stress-life method, 474
Stress, local, 213
Stress, micro-yield, 427
Stress, residual, 386, 399
Sulphur reduction, 27
Supplier evaluation techniques, 138
Surface dents, 263
Surface hardened steel, 427, 459
Surface hardness, 386
Surface initiated damage, 263
Surface integrity, 71

**T**
Teeming/casting temperature, 27
Temperature resistance, 285
Tempering stability, 320
Tensile strength, 3
Tension-compression fatigue tests, 113
Test lives, 213
Thermal-induced transformation, 244
32CDV13, 362
Through-hardened steel, 459
Titanium, 47
Tool life, 71
Tool steel, 349
Tungsten, 399
Turning test, single point, 71

**U**
Ultrasonic testing, 47, 138
cleanliness level characterization, 101
higher frequency method, 176
immersion, 164
nonmetallic inclusion evaluation, 148

**V**
Vacuum arc degassing, 47
Vanadium, 297, 349, 399

**W**
Water-infiltrated lubrication, 226
Water submerge life test, 414
Wear resistance, 3, 27, 309, 349
aerospace applications, 386
Cronidur 30, 362
CSS-42L, 362, 375
nitrided steel, 362
Pyrowear 675, 362
XD15NW, 362

Weibull distributions, 386, 493

X

XD15NW, 362
X-ray diffraction analysis, 443