Subject Index

A

Aluminum alloy, 17, 279, 381
 separability property, 49
Aspect ratio, 381
A285 steel, 399
ASTM C 1421-99, 315, 336
ASTM E 399, 263, 353
ASTM E 1820-96, 49, 139, 263
ASTM E 1921-97, 3
Atomic-force microscopy, 122

B

Backtracking method, 105, 214
α-Brass, 122
Brittle fracture, 17, 247
Brittle-to-ductile transition region, 195

C

Calibration function, 263
Ceramics, fracture toughness, 315, 336
Chevron notch, 336
Cleavage resistance, 195
Compact type specimens, 88
Compliance ratio method, 139
Composite laminates, modeling multilayer damage, 301
Compressive residual stress, 247
Computational cell model, 195
Constraint loss, 195
Crack arrest toughness, correlation with static initiation toughness, 17
Crack closure, 75, 381
Crack extension, 139
Crack growth, 75, 195, 381
 creep, 179
 ductile, 229
 random load, 88
 slow, 315
 surface, 381
 time-dependent, 179
Crack growth rates, 88
Crack initiation, 122
 load and location prediction, 353
Crack length, 263
 compliance ratio method, 139
 estimation, 49
Crack opening displacement, 75
Crack propagation, 229
Cracks, part-through, 353, 381
Crack tip opening angles, three-dimensional analysis, 279
Crack tip opening displacement, 279
 critical, 247
Creep crack growth, 179
Cyclic loading, 381
Cyclic plasticity, 75

D

Damage mechanics, 195
Deformation property, 49
Delaminations, matrix crack-induced, 301
Dislocation mechanics, 3
Dissipation rate, 229
Ductile crack growth, 229
Ductile tearing, 399
Dynamic fracture toughness tests, 139
Dynamic testing, 139

E

Elastic compliance, 139, 263
Elastic-plastic fracture, 279
Energetic approach, 229
Equivalent constraint model, 301

F

Fatigue
 random, 88
 SA533-B1 steels, 105
 slip-bands, 122
Fatigue crack propagation, correlation with reduced stress intensity range, 75
Fatigue loading, 301
Fatigue testing, 381
Ferritic steels, 3, 139
Finite-element analysis, 279
Fractograph, 105
Fracture, 37
Fracture energy, 229
Fracture instability, residual stress effects, 247
Fracture mechanics, 49
Fatigue and fracture mechanics: 32nd volume

Fracture toughness, 399
 ceramics, 315, 336
 temperature dependency, 3
 thin-walled tube, 214
Fracture toughness tests, 17, 139
 dynamic, 139
Fuel cladding, 214

Part-through cracks, 353, 381
Plane-strain fracture toughness, 353
Plastic zones, 88
Power-spectrum shapes, 88
Precracked beam, 336

Geometry effect, 195

Heat affected zone, 179
High-cycle fatigue, 105
High-strength steel, 353
HY-100, 139
Hydrostatic stress, 75

Random fatigue, 88
J-R-curve, 315
Reference material, 336
Residual stress effects, 247
σs-Resistance curves, 279
Round robin, 336

J-integral, 37, 49, 229, 399

Key curve, 37, 139

Limit load, 139
Linear-elastic fracture mechanics, 88, 263
Local approach, 195, 247
Longitudinal cracking, 301
Low-cycle fatigue, 105

SA533-B1 steels, 105
Scanning atomic-force microscopy, 122
Sensitivity, 37
Separability property, 49
Shear lag method, 2-D, 301
Slip-band, 122
Specimen geometry, 88
Stability, 315
Standard reference material 2100, 336
Static initiation toughness, correlation with crack arrest toughness, 17
Static loading, 301
Stiffness degradation, 301
Strength mismatch, 195
Stress intensity factor, 105
 concise, 263
Stress intensity range, reduced, 75
Stress ratios, 381
Structural integrity, 229
Structural tests, 229
Surface crack, in flexure, 336
Surface crack bend specimens, 88
Surface crack growth, 381

Martensitic steel, 3
Master Curve
 applicability, microstructural limits, 3
 crack arrest, 17
Matrix crack-induced delaminations, 301
Micromechanics, 122

Normalization, 139
 sensitivity study, 37
 separability property and, 49
Normalization function, 139
Nuclear reactor pressure vessels, 3
 ηpl factor, 49

Tension-tension fatigue, 301
Thermal cycling, 301
Thin-walled tube, fracture toughness, 214
Transferability analysis, 195
Traverse cracking, 301
U

Uncertainty analysis, 381

V

VAMAS, 336

W

Warm preloading, 247
Waste tanks, 399
Weibull stress, 195, 247

Welds
creep crack growth, 179
mismatched, brittle-to-ductile transition region, 195
under-matched, 139

X

X20CrMoV 12 1 steel, 179
X-specimen test, 214

Z

Zircaloy fuel cladding, 214