Subject Index

A

Abrasion resistance, 169
Abrasive blasting, 62
Abrasive material, residual, 125
Aluminum-silicon-iron-
manganese coatings, 179
Amorphous carbon, tetrahedral, 169
Amorphous Co-20P alloy, 32
Amorphous cobalt-chromium particles, 194
Annealing temperature effects, 98
Articulating surface, 125
ASTM standards
E 466, 3
F 75, 3, 62, 89
F 138, 156
F 1537, 11, 62, 71, 98, 145, 156

B

Bar stock, 71, 98
Bone cement particles, 194
Bone conductive, 32
Bone-implant interface, 32

C

Carbon composition, 145
Carbon content, cobalt-chromium-
molybdenum alloy, 47, 108
high carbon, 11, 98, 125
low carbon, 98, 125
Carbon, diamond-like, 169
Cast cobalt-chromium-
molybdenum alloy, 62, 108, 125
Cellular response, wear particles, 194
Chromium, serum protein carriers, 211
Coatings
physical vapor deposition, 169
porous, 62, 71, 89
quaternary intermetallic compound, 179
wear resistant, 32
Cobalt-chromium alloys, 71, 194
cast, 135
high carbon wrought, 135
low carbon wrought, 135
Cobalt-chromium-carbon, 32
Cobalt-chromium-molybdenum alloy, 32
F 75, 3, 62, 89
F 799, 89
F 1537, 11, 62, 71, 98, 145, 156
bar stock, 71
carbon, 108
cast, 62, 108, 125
cast and wrought, 62
coatings, 32, 62, 71, 89, 179
dispersion-strengthened, 89
forged, 11, 62, 71, 89
high carbon, 11, 98, 125
injection molded, 3
low carbon, 98, 125
powder morphology processed, 47
rolled, 11
wrought, 11, 62, 98, 125
Cold drawing effects, 98
Compressibility, 47
Compression tests, 108
Contact angle measurements, 156
Corrosion behavior, 47, 211
Corrosion resistance, 89, 169

D

Dental devices, physical vapor deposition coatings for, 169
Dispersion strengthened cobalt-
chromium-molybdenum alloy, 89
Ductility, 47, 98, 108

E

Electroslag remelting, 11
<table>
<thead>
<tr>
<th>Letter</th>
<th>Terms</th>
</tr>
</thead>
</table>
| F | Fatigue strength, 62, 71, 89
| | Fatigue test
| | E 466, 3
| | Forged cobalt-chromium-molybdenum alloy, 11, 62, 71
| | F 799, 89
| G | Gas-atomized dispersion strengthened alloys, 89
| | Glassy alloys, 32
| | Grain size, 98
| | Grain structures, 89
| | Gravimetric technique, 145
| | Grinding, surface, 125
| H | Hardness, 47
| | Hip implants, metal, 125
| | Hip replacements, 194
| | Hip simulator test machine, 135, 145
| | Hot isostatic pressing, 62
| | Hypophosphite layer, 32
| I | Injection molding, 3
| | Intermetallics, 179
| | Investment casting, 62
| | Iron, in intermetallic compounds, 179
| J | Joint replacement, chromium serum protein carriers, 211
| L | Laser marking, 62
| M | Manganese, intermetallic compounds, 179
| | McMinn surface replacements, 194
| | Metal injection molding, 3
| | Metal ion release, 211
| | Metal on metal bearing surfaces, 125
| | hip replacements, 194
| | wear, 135, 145
| | Metal protein binding, 211
| | Metasul total hips, 194
| | Microprobe analysis, 179
| P | Phase transformation, 108
| | Physical vapor deposition coatings, 169
| | Plastic deformation, 108
| | Polyethylene ultrahigh molecular weight, wear, 32, 156
| | Polymeric compliant layer, 47
| | Powder metallurgy, 47
| | Protein, 211
| R | Rolled cobalt-chromium-molybdenum alloy, 11
| | Rolling temperature effects, 98
| S | Scanning electron microscopy, 108, 125
| | Silicon, in intermetallic compounds, 179
| | Sintering behavior, 71
| | investment cast F 75, 62
| | liquid phase injection molded F 75, 3
| | powder morphology processed, 47
| | Solution treating, 62
| | cobalt-chromium alloy, 135
| | Spraying, metal process, 11
| | Steel, stainless F 138, 156
| | Strain hardening, 108
| | Surface grinding, 125
| | Surface roughness, 135, 156

T

- Tensile strength, 71
- Tensile test, 47
- Tensile test, 3
- Tetrahedral amorphous coatings, 169
- Titanium alloy, 71
- nitride, 169

V

- Vacuum induction melt, 11
- Vitallium, 89

W

- Wear performance, 194
- Wear resistance, 11, 125, 135, 145
- Wear resistant coatings, 32, 169
- Wear testing, 135, 145, 156
- Wear, ultrahigh molecular weight polyethylene, 32
- Wrought-annealed materials, 108
- Wrought cobalt-chromium-molybdenum, 11, 62, 98, 125
- X-ray diffraction, 108
- Yield strength, 3, 108
- Zirconium nitride, 169